Изменения

Перейти к: навигация, поиск

Участник:Iloskutov/Матан 4сем

1400 байт добавлено, 17:07, 25 июня 2015
Теорема Лебега о мажорированной сходимости для случая сходимости по мере
Тогда <tex>f_n, f</tex> - суммируемые и <tex>\int |f-f_n| d\mu \to 0</tex>
|proof=
<tex>f_n</tex> - суммируема, т.к. <tex>\int |f_n| \leqslant \int g < + \infty</tex><br>
<tex>f</tex> - суммируема, т.к. <tex>\exists f_{n_k} \to f</tex> почти везде, <tex> |f_{n_k}| \leqslant g \Rightarrow |f| \leqslant g</tex><br>
<tex>\int\limits_X |f_n - f| d\mu \to 0 ?</tex><br>
Рассмотрим два случая:<br>
1) <tex>\mu X < +\infty</tex><br>
Берём <tex>\epsilon > 0 \quad X_n := X (|f_n - f| > \epsilon) \quad \mu X_n \to 0</tex><br>
<tex>\int\limits_X |f_n - f| d\mu \leqslant \int\limits_{X_n} |f_n - f| d\mu + \int\limits_{X^C_n} |f_n - f| d\mu</tex><br>
Для <tex>X_n</tex> выполнено <tex>|f_n - f| \leqslant |f_n| + |f| \leqslant 2 \cdot g</tex><br>
А для <tex>X^C_n</tex> выполнено <tex> |f_n - f| < \epsilon</tex><br>
Тогда <tex>\int\limits_{X_n} |f_n - f| d\mu + \int\limits_{X^C_n} |f_n - f| d\mu \leqslant \int\limits_{X_n} 2 \cdot g d\mu + \int\limits_{X^C_n} \epsilon d\mu \leqslant 2 \cdot \int\limits_{X_n} g + \epsilon \cdot \mu X \leqslant \epsilon \cdot (2 + \mu X)</tex><br>
Получили <tex>\forall \epsilon > 0 \quad \exists N: \forall n > N \quad \int\limits_X |f_n - f| d\mu < \epsilon \cdot (2 + \mu X)</tex><br>
Осталось найти номер <tex>N</tex>. Нужно взять такой, чтобы <tex>\mu X_n < \delta</tex>.<br>
2) <tex>\mu X = +\infty</tex><br>
TBD
}}

Навигация