Изменения

Перейти к: навигация, поиск

Список заданий по ДМ 2к 2020 осень

13 945 байт добавлено, 20:24, 21 декабря 2020
Нет описания правки
# (для 34-35) Докажите, что если $p = \omega(\frac{1}{n^2})$, то случайный граф $G(n, p)$ а.п.н. имеет хотя бы одно ребро.
# (для 34-35) Пусть $p = \frac{c}{n^2}$ для некоторого $c$. Найдите вероятность того, $G(n, p)$ имеет хотя бы одно ребро.
# Оцените центральный биномиальный коэффициент ${2n \choose n}$ снизу величиной порядка $c \frac {c4^n}{\sqrt{n}}$. Указание: используйте формулу Стирлинга.
# Рассмотрим число ребер $m$, такое что $m(n) \to \infty$ и ${n \choose 2} - m(n) \to \infty$, а также $p(n) = \frac {m(n)}{n \choose 2}$. Докажите, что вероятность того, что $G(n, p)$ имеет ровно $m$ ребер есть $\Omega(m^{-0.5})$.
# Рассмотрим свойство $A$, а и такие же $m(n)$ и $p(n)$, как в предыдущей задаче. Докажите, что $P(G(n, m) \in A) \le C \sqrt{m} P(G(n, p) \in A)$.
# Пусть для некоторого свойства $A$ существует две функции $p_1(n)$ и $p_2(n)$, что для графа $G(n, p_1(n))$ свойство $A$ а.п.н. не выполняется, а для $G(n, p_2(n))$ свойство $A$ а.п.н. выполняется. Докажите, что существует функция $\tilde p(n)$, что для случайного графа $G(n, \tilde p(n))$ свойство $A$ выполняется с вероятностью, стремящейся к $\frac 12$.
# Докажите, что $G(n, \frac {2\ln n}{n})$ а.п.н. не содержит вершин степени 0.
# Рассмотрим модель случайного двудольного графа $G(n, n, p)$: из полного двудольного графа $K_{n,n}$ каждое ребро удаляется с вероятностью $1 - p$. Пусть $X$ -- количество изолированных вершин первой доли. Найдите $EX$ и $DX$.
# Докажите, что если $p = o(n^{-1.5})$, то $G(n, p)$ а.п.н. является объединением компонент связности размера 1 и 2.
# Докажите, что если $p = \omega(n^{-1.5})$, то $G(n, p)$ а.п.н. содержит путь длины 2.
# Пусть $p = o(n^{-\frac 23})$. Докажите, что а.п.н. $G(n, p)$ не содержит $K_4$.
# Пусть $p = o(\frac 1n)$ и $k$ -- константа. Покажите, что $G(n, p)$ а.п.н. не содержит цикл длины $k$.
# Пусть $p = \omega(\frac 1n)$ и $k$ -- константа. Покажите, что $G(n, p)$ а.п.н. содержит цикл длины $k$.
# Пусть $p = o(\frac 1n)$. Покажите, что $G(n, p)$ а.п.н. не содержит циклов.
# Покажите, что матожидание количества остовных деревьев у графа $G(n, \frac {\ln n}{2n})$ стремится к бесконечности.
# Покажите, что матожидание количества остовных деревьев у графа $G(n, \frac {2\ln n}{n})$ стремится к бесконечности. Можно ли это считать доказательством а.п.н. связности графа $G(n, \frac {2\ln n}n)$?
# Найдите матожидание количества индуцированных подграфов $G(n, \frac dn), d > 1$, которые являются путем длины $k = \sqrt{\log n}$.
# Подберите $p(n)$ и приведите последовательности случайных величин $X_n$ для $G(n, p)$, что $EX_n \to \infty$, но $\mathcal{P}(X_n = 0) \nrightarrow 0$.
# Для каких $p$ граф $G(n, p)$ а.п.н. не содержит $K_k$ (надо привести пороговую асимптотику)?
# Пусть $p = \frac dn$. Докажите, что в $G(n, p)$ каждая вершина а.п.н. принадлежит не более, чем одному треугольнику.
# Докажите, что в $G(n, \frac 12)$ а.п.н. не существует независимого множества размера $2 \log_2 n$
# Докажите, что для любого $\varepsilon > 0$ в $G(n, \frac 12)$ матожидание количества независимых множеств размера $(2 - \varepsilon) \log_2 n$ стремится к $\infty$.
# Докажите, что для любого $\varepsilon > 0$ в $G(n, \frac 12)$ а.п.н. существует независимое множество размера $(2 - \varepsilon) \log_2 n$.
# Пусть $p = \omega(\frac 1n)$. Покажите, что $G(n, p)$ а.п.н. содержит цикл.
# Пусть $p = \frac dn$. Что можно сказать про наличие циклов в $G(n, p)$ в зависимости от $d$?
# Рассмотрим случайный двудольный $G(n, n, p)$, пусть $p = \omega(\frac{\log n}{n})$. Докажите, что $G$ а.п.н. содержит полное паросочетание. Указание: используйте лемму Холла.
# Рассмотрим случайный двудольный $G(n, n, p)$, пусть $p = o(\frac{\log n}{n})$. Докажите, что $G$ а.п.н. не содержит полное паросочетание. Указание: используйте лемму Холла.
# Пусть $p = \frac{\ln n + c}{n}$. Какой предел вероятности, что у $G(n,p)$ ровно $k$ изолированных вершин?
# Докажите, что если $p = \frac{d}{n}$, $d > 1$, то все компоненты связности, кроме гигантской, а.п.н. являются деревьями.
# Докажите, что если $p = \frac{d}{n}$, $d > 1$, то в графе а.п.н. нет компоненты связности ровно с одним циклом.
# Пусть $C$ компонента связности графа $G(n, m)$ в равномерной модели, причем размер $C$ это $k = O(1) $, а $m = o(n)$. Найдите предел вероятности, что $C$ останется компонентой связности после добавления в граф $\alpha n$ случайных ребер, которых там еще нет (то есть при переходе к графу $G(n, m+\alpha n)$).
# Докажите, что любой граф с $n$ вершинами и $m$ ребрами содержит двудольный подграф с как минимум $\frac m2$ ребрами.
# Пусть граф $G$ с $n$ вершинами и $m \ge 4n$ ребрами изображен на плоскости, причем никакие три ребра не пересекаются в одной точке, и никакое ребро не содержит вершину как свою внутреннюю точку. Обозначим как $c$ число попарных пересечений ребер вне вершин. Докажите, что $c \ge \frac{m^3}{64n^2}$.
# Пусть на плоскости выбрано $n$ точек, обозначим как $l$ число прямых, каждая из которых содержит хотя бы $k+1$ из заданных точек ($1 \le k \le 2\sqrt{2n}$). Докажите, что $l \le 32n^2/k^3$.
# Докажите, что $\alpha(G) \ge \sum (1 + \deg u)^{-1}$ с помощью вероятностного метода.
# Постройте матроид с 4 элементами и 5 базами. Укажите множество циклов этого матроида.
# Постройте матроид с 5 элементами и 12 базами.
# Матроид, стянутый по элементу. Пусть $M$ - матроид. Обозначим как $M/x$ матроид, где из носителя выкинут элемент $x$. Независимыми объявляются независимые множества исходного матроида, которые ранее содержали $x$, после удаления из них этого элемента. Формально, если $M = \langle X, I\rangle$, то $M/x = \langle X \setminus x, \{A \setminus x | A \in I, x \in A\}\rangle$. Докажите, что для любых $M$ и $x$, таких что $\{x\}\in I$ получившаяся конструкция $M/x$ является матроидом.
# Прямая сумма матроидов. Пусть $X$ и $Y$ - непересекающиеся множества, $M_1$ - матроид с носителем $X$ и $M_2$ - матроид с носителем $Y$. Построим новый матроид, назовем носителем объединение $X \cup Y$, независимыми объявим множества, которые являются объединением независимого из $M_1$ и независимого из $M_2$. Докажите, что прямая сумма матроидов является матридом.
# Представьте разноцветный матроид в виде прямой суммы универсальных матроидов.
# Является ли алгоритм Прима вариантом алгоритма Радо-Эдмондса?
# Являются ли паросочетания в полном графе семейством независимых множеств некоторого матроида?
# Рассмотрим кратчайшие пути из $s$ в $t$ в неориентированном невзвешенном графе. Назовем множество ребер независимым, если оно лежит на некотором кратчайшем пути. Образует ли эта конструкция семейство независимых множеств некоторого матроида?
# Урезанный матроид. Пусть $M = \langle X, I \rangle$ - матроид. Обозначим как $M|_k$ следующую констркуцию: $M|_k = \langle X, \{A | A \in I, |A| \le k \}\rangle$. Докажите, что $M|_k$ является матроидом.
# Будем называть предматроидом пару $\langle X, I \rangle$, для которой выполнены аксиомы нетривиальности ($\varnothing \in I$) и наследования независимости ($A \subset B$, $B \in I$, тогда $A \in I$). Пусть в предматроиде для любой весовой функции верно работает жадный алгоритм Радо-Эдмондса. Докажите, что такой предматроид является матроидом.
# Пусть $M$ - предматроид. Как и в матроиде будем называть базой множества максимальное по включению подмножество из $I$. Докажите, что если для каждого множества $A$ все его базы равномощны, то $M$ - матроид.
# Для каких универсальных матроидов существует изоморфный ему матричный матроид?
# Проекция матроида. Пусть $M = \langle X, I \rangle$ - матроид, $f : X \to Y$ - произвольная функция. Обратите внимание, что нет необходимости, чтобы $f$ была инъекцией или сюрьекцией. Построим конструкцию $f(M)$ как пару из носителя $Y$ и семейства множеств $f(I) = \{ f(A) \,|\, A \in I\}$. Докажите, что $f(M)$ является матроидом.
# Будем называть два элемента $x$ и $y$ матроида параллельными, если пара $\{x, y\}$ образует цикл. Докажите, что если $A$ независимо $x \in A$, а $x$ и $y$ параллельны, то $A\setminus x\cup y$ также независимо.
# Дайте альтернативное определение параллельных элементов на языке баз.
# Докажите, что отношение "быть параллельными" является транзитивным.
# Как устроено замыкание в графовом матроиде?
# Как устроено замыкание в матричном матроиде?
# Докажите, что если $A$ независимо, то для любого $p \in A$ выполнено $p \not\in \langle A \setminus p\rangle$.
# Докажите, что если $A \subset B$, то $\langle A \rangle \subset \langle B \rangle$.
# Докажите, что $\langle \langle A \rangle \rangle = \langle A \rangle$
# Докажите, что если $q \not\in \langle A \rangle$, $q \in \langle A \cup p\rangle$, то $p \in \langle A \cup q \rangle$
# Двойственный матроид. Пусть $M = \langle X, I \rangle$ - матроид. Обозначим как $M^*$ следующую конструкцию: $M^* = \langle X, \{A \,|\, \exists B $ - база $M, A \cap B = \varnothing\}\rangle$. Докажите, что $M^*$ является матроидом.
# Циклы двойственного матроида называются коциклами. Докажите, что любая база пересекается с любым коциклом.
# Докажите, что двойственный к матричному матроид является матричным для некоторой матрицы. Как устроена его матрица?
# Докажите, что двойственный матроид к графовому на $K_5$ не является графовым ни для какого графа.
# Докажите, что двойственный матроид к графовому на $K_{3,3}$ не является графовым ни для какого графа.
# Когда двойственный к графовому матроид является графовым для некоторого графа?
# Рассмотрим носитель некоторого матроида, упорядочим произвольным образом его элементы: $X = \{x_1, x_2, \ldots, x_n\}$. Пусть $Y = \left\{x_k \,|\, rank(\{x_1, \ldots, x_{k-1}, x_k\}) > rank(\{x_1, \ldots, x_{k-1}\})\right\}$. Докажите, что $Y$ независимо.
# Сверхсильная теорема о базах. Докажите, что для любых двух различных баз $A$ и $B$ и элемента $x \in A \setminus B$ найдётся $y \in B \setminus A$, так что $A \setminus x \cup y$ и $B \setminus y \cup x$ обе являются базами.
# Доказать, что $M^{**}=M$
# Один студент считает, что xor двух циклов обязательно содержит цикл. Доказать или опровергнуть.
Анонимный участник

Навигация