Изменения

Перейти к: навигация, поиск

Batch-normalization

826 байт добавлено, 8 январь
add introduction to CBN
Нормализация входного слоя нейронной сети обычно выполняется путем масштабирования данных, подаваемых в функции активации. Например, когда есть признаки со значениями от <tex>0</tex> до <tex>1</tex> и некоторые признаки со значениями от <tex>1</tex> до <tex>1000</tex>, то их необходимо нормализовать, чтобы ускорить обучение. Нормализацию данных можно выполнить и в скрытых слоях нейронных сетей, что и делает метод пакетной нормализации.
===Пакет===
Предварительно, напомним, что такое '''пакет''' (англ. batch). Возможны два подхода к реализации алгоритма градиентного спуска для обучения нейросетевых моделей: стохастический и пакетный<ref>[http://www.machinelearning.ru/wiki/index.php?title=Метод_стохастического_градиента Метод стохастического градиента]</ref>. * [[Стохастический градиентный спуск|Стохастический градиентный спуск]] (англ. stochastic gradient descent) {{---}} реализация, в которой на каждой итерации алгоритма из обучающей выборки каким-то (случайным) образом выбирается только один объект; * Пакетный (батч) (англ. batch gradient descent) {{---}} реализация градиентного спуска, когда на каждой итерации обучающая выборка просматривается целиком, и только после этого изменяются веса модели.
Также существует "золотая середина" между стохастическим градиентным спуском и пакетным градиентным спуском {{---}} когда просматривается только некоторое подмножество обучающей выборки фиксированного размера (англ. batch-size). В таком случае такие подмножества принято называть мини-пакетом (англ. mini-batch). Здесь и далее, мини-пакеты будем также называть пакетом.
===Ковариантный сдвиг===
[[Файл:covariate-shift1.png|600px|thumb|Рисунок 1. Верхние две строки роз показывают первое подмножество данных, а нижние две строки показывают другое подмножество. Два подмножества имеют разные пропорции изображения роз. На графиках показано распределение двух классов в пространстве объектов с использованием красных и зеленых точек. Синяя линия показывает границу между двумя классами. Иллюстрация из [https://www.learnopencv.com/batch-normalization-in-deep-networks/ статьи].]]
Пакетная нормализация уменьшает величину, на которую смещаются значения узлов в скрытых слоях (т.н. '''[[Ковариация случайных величин|ковариантный]] сдвиг''' (англ. covariance shift)).
Ковариантный сдвиг {{---}} это ситуация, когда распределения значений признаков в обучающей и тестовой выборке имеют разные параметры (математическое ожидание, дисперсия и т.д.). Ковариантность в данном случае относится к значениям признаков.
Проиллюстрируем ковариантный сдвиг примером.
Пусть есть [[Глубокое обучение|глубокая нейронная сеть]], которая обучена определять находится ли на изображении роза.
И нейронная сеть была обучена на изображениях только красных роз.
Теперь, если попытаться использовать обученную модель для обнаружения роз различных цветов, то, очевидно, точность работы модели будет неудовлетворительной.
Это происходит из-за того, что обучающая и тестовая выборки содержат изображения красных роз и роз различных цветов в разных пропорциях. Другими словами, если модель обучена отображению из множества <tex>X</tex> в множество <tex>Y</tex> и если пропорция элементов в <tex>X</tex> изменяется, то появляется необходимость обучить модель заново, чтобы "выровнять" пропорции элементов в <tex>X</tex> и <tex>Y</tex>. Когда пакеты содержат изображения разных классов, распределенные в одинаковой пропорции на всем множестве, то ковариантный сдвиг незначителен. Однако, когда пакеты выбираются только из одного или двух подмножеств (в данном случае, красные розы и розы различных цветов), то ковариантный сдвиг возрастает.
Это довольно сильно замедляет процесс обучения модели. На Рисунке 1 изображена разница в пропорциях.
Простой способ решить проблему ковариантного сдвига для входного слоя {{---}} это случайным образом перемешать данные перед созданием пакетов. Но для скрытых слоев нейронной сети такой метод не подходит, так как распределение входных данных для каждого узла скрытых слоев изменяется каждый раз, когда происходит обновление параметров в предыдущем слое. Эта проблема называется '''внутренним ковариантным сдвигом''' (англ. internal covariate shift). Для решения данной проблемы часто приходится использовать низкий [[Стохастический градиентный спуск|темп обучения]] (англ. learning rate) и методы [[wikipedia:ru:Регуляризация_(математика)|регуляризации]] при обучении модели.
Другим способом устранения внутреннего ковариантного сдвига является метод пакетной нормализации.
На Рисунке 2 изображен [[Настройка_глубокой_сети#Граф вычислений|граф вычислений]] слоя пакетной нормализации алгоритмом обратного распространения ошибки.
В прямом направлении, как и описано в алгоритме метода, из входа <tex>x</tex> вычисляется среднее значение по каждой размерности признакового пространства. Затем полученный вектор средних значение вычитается из каждого элемента обучающей выборки. Далее вычисляется дисперсия, и с помощью нее вычисляется знаменатель для нормализации. Затем полученное значение инвертируется и умножается на разницу входа <tex>x</tex> и средних значений. В конце применяются параметры <tex>\gamma</tex> и <tex>\beta</tex>.
В обратном направлении вычисляются производные необходимых функций. В следующей таблице подробнее изображены шаги вычисления градиента функции потерь (иллюстрации из [https://kratzert.github.io/2016/02/12/understanding-the-gradient-flow-through-the-batch-normalization-layer.html статьи], здесь <tex>N=m</tex> и <tex>D=d</tex>):
В случае свёрточных сетей, дополнительно необходима нормализация, чтобы удовлетворить свойство свёрточных сетей, что различные элементы в разных местах одной карты признаков (образ операции свёртки, англ. feature map) должны быть нормализованы одинаково. Чтобы этого добиться, нормализация выполняется совместно над всеми значениями в пакете. Пусть <tex>B</tex> {{---}} множество всех значений в карте признаков по всему пакету и всем точкам в карте признаков. Тогда для пакета размера <tex>m</tex> и карты признаков размера <tex>p \times q</tex> размер <tex>B</tex> равен <tex>m'=|B|=m \cdot pq</tex>. Тогда параметры <tex>\gamma^{(k)}</tex> и <tex>\beta^{(k)}</tex> настраиваются для каждой карты признаков отдельно.
==Условная пакетная нормализация== '''Условная пакетная нормализация''' (англ. conditional batch normalization,CBN) {{---}} метод, который позволяет "выбирать" параметры пакетной нормализации(<tex>\beta</tex> и <tex>\gamma</tex>) в зависимости от какого-то состояниясети, например метки класса. Впервые данный метод был представлен дляиндивидуальной нормализации в<ref>[https://arxiv.org/pdf/1610.07629.pdf A Learned Representation for Artistic Style]</ref>.Позднее он был использован для пакетной нормализации в<ref>[https://arxiv.org/pdf/1707.00683v3.pdf Modulating early visual processing by language]</ref>.
===Перенос стиля===
[[File:bn_exp_2.png|300px|thumb|Рисунок 6. Точность распознавания в зависимости от итерации обучения c использованием сигмоиды в качетсве функции активации. Иллюстрация из [https://github.com/udacity/deep-learning/blob/master/batch-norm/Batch_Normalization_Lesson.ipynb статьи].]]
Приведем пример демонстрирующий работу пакетной нормализации. Рассмотрим задачу распознавания рукописных цифр на известном датасете MNIST <ref>[http://yann.lecun.com/exdb/mnist/ Датасет MNIST]</ref>. Для решения задачи будет использоваться обычная нейронная сеть с <tex>3</tex> скрытыми полносвязными слоями по <tex>100</tex> узлов в каждом. Функция активации {{---}} ReLU. Выходной слой содержит <tex>10</tex> узлов. Размер пакета равен <tex>60</tex>. Сравниваются две одинаковые модели, но в первой перед каждым скрытым слоем используется пакетная нормализация, а во второй {{---}} нет. Темп обучения равен <tex>0.01</tex>. Веса инициализированы значениями с малой дисперсией.
На Рисунке 5 изображены два графика, показывающие разницу между моделями. Как видно, обе модели достигли высокой точности, но модель с использованием пакетной нормализации достигла точности более <tex>90\%</tex> быстрее, почти сразу, и достигла максимума, примерно, уже на <tex>10000</tex> итераций. Однако, модель без пакетной нормализации достигла скорости обучения примерно <tex>510</tex> пакетов в секунду, а модель с использованием пакетной нормализации {{---}} <tex>270</tex>.
Однако, как можно видеть, пакетная нормализация позволяет выполнить меньшее количество итераций и, в итоге, сойтись за меньшее время.
На Рисунке 6 изображен график, сравнивающий точно такие же модели, но с использованием сигмоиды в качестве функции активации. Такая конфигурация моделей требует большего времени, чтобы начать обучение. В итоге, модель обучается, но на это потребовалось более <tex>45000</tex> итераций, чтобы получить точность более <tex>80\%</tex>.
При использовании пакетной нормализации получилось достичь точность более <tex>90\%</tex> примерно за <tex>1000</tex> итераций.
Существует несколько модификаций и вариаций метода пакетной нормализации:
# Тим Койманс<ref>[https://arxiv.org/pdf/1603.09025.pdf Cooijmans T. {{---}} Recurrent batch normalization, 2016]</ref> в 2016 г. предложил способ применения пакетной нормализации к [[Рекуррентные нейронные сети|рекуррентным нейронным сетям]];
# Расширение метода пакетной нормализации было предложено Ликси Хуангом<ref>[https://arxiv.org/pdf/1804.08450.pdf Huang L. {{---}} Decorrelated Batch Normalization, 2018]</ref> в 2018 г. Метод получил название декоррелированная пакетная нормализация (англ. Decorrelated Batch Normalization). В данном методе кроме операций масштабирования и сдвига была предложено использование специальной функции затирания данных;
# Джимми Лей Ба<ref>[https://arxiv.org/pdf/1607.06450.pdf Ba J. L., Kiros J. R., Hinton G. E. {{---}} Layer normalization, 2016]</ref> в 2016 г. предложил метод нормализации слоев (англ. Layer Normalization), который решает проблему выбора размера пакета;
# В работе Сергея Иоффе<ref>[https://arxiv.org/pdf/1702.03275.pdf Ioffe S. {{---}} Batch renormalization: Towards reducing minibatch dependence in batch-normalized models, 2017]</ref> в 2017 г. было представлено расширение метода пакетной нормализации: пакетная ренормализация (англ. Batch Renormalization). Данный метод улучшает пакетную нормализацию, когда размер пакетов мал и не состоит из независимых данных;
25
правок

Навигация