Изменения

Перейти к: навигация, поиск

Generative Adversarial Nets (GAN)

1 байт убрано, 15 январь
LAPGAN (Laplacian Pyramid of Adversarial Networks)
'''LAPGAN''' $-$ генеративная параметрическая модель, представленная пирамидой лапласианов с каскадом сверточных нейронных сетей внутри, которая генерирует изображения постепенно от исходного изображения с низким разрешением к изображению с высоким. На каждом уровне пирамиды обучается сверточная генеративная модель, используя подход порождающих состязательных сетей. Такая стратегия позволяет декомпозировать задачу генерации изображений на последовательность уровней, что упрощает ее решение.
[[File:LAPGANtest.jpg|500px|thumb|right|Процедура семплинга для модели LAPGAN. Источник: https://arxiv.org/pdf/1506.05751.pdf]]
Пирамида лапласианов $-$ это линейное обратимое представление изображений, состоящее из набора частотных полос изображений. Пусть <tex>d(\cdot)</tex> - это операция сжатия изображения размера <tex>j \times j</tex> так, что новое изображение <tex>d(I)</tex> имеет размеры <tex>j/2 \times j/2</tex>, также <tex>u(\cdot)</tex> - операция расширения такой, что <tex>u(I)</tex> имеет размеры <tex>2j \times 2j</tex>. Тогда пирамида гаусианов имеет вид <tex>\mathcal{G}(I) = [I_0, I_1,..., I_k]</tex>, где <tex>I_0 = I</tex> и <tex>I_k</tex> представляет собой <tex>k</tex> раз выполненное применение <tex>d(\cdot)</tex>. Коэффициенты <tex>h_k</tex> на каждом уровне пирамиды лапласианов считаются так:
Подход представленный в '''LAPGAN''' работает по такому же принципу, только на каждому шаге вместо коэфициентов <tex>h_k</tex> используются генераторы <tex>\{G_0,G_1,...,G_k\}</tex>, каждый из которых захватывает распределение коэфициентов <tex>h_k</tex> для реальных изображений на разных уровнях пирамиды лапласиана:
<center><tex>\tilde{I_k} = u(\tilde{I_{k + 1}}) + \tilde{h_k} = u(\tilde{I_{k + 1}}) + G_k(z_k, u(\tilde{I_{k + 1}}))</tex></center>
 
[[File:LAPGANtest.jpg|500px|thumb|right|Процедура семплинга для модели LAPGAN. Источник: https://arxiv.org/pdf/1506.05751.pdf]]
Процедура семплинга для нашей модели '''LAPGAN'''. Начинаем с шума <tex>z_3</tex> и используем генеративную модель <tex>G_3</tex> для создания <tex>\tilde{I_3}</tex>. Потом расширяем изображение до <tex>l_2</tex> для следующиего уровня генерации <tex>G_2</tex>. Вместе с еще одним шумом <tex>z_2</tex> получаем изображение различия <tex>\tilde{I_2}</tex>. Продолжаем процесс, пока не получим <tex>I_0</tex>.
66
правок

Навигация