Изменения

Перейти к: навигация, поиск

Карта глубины

1656 байт добавлено, 23 январь
Прогнозирование глубины без датчиков: использование структуры для обучения без учителя по монокулярным видео (2019)
'''PlaneNet'''<ref name="planetNet"> Chen Liu, Jimei Yang, Duygu Ceylan, Ersin Yumer, Yasutaka Furukawa "PlaneNet: Piece-wise Planar Reconstruction from a Single RGB Image" [https://arxiv.org/abs/1804.06278v1]</ref> {{---}} глубокая нейронная сеть, построенная на расширенных остаточных сетях (aнгл. Dilated Residual Networks или DRN)<ref name="drn"> Fisher Yu, Vladlen Koltun, Thomas Funkhouser "Dilated Residual Networks" [https://arxiv.org/abs/1705.09914]</ref>. Она получает карту глубин путем композиции выходов трех подзадач:
[[Файл:plane_netPlane net2.pngjpg|thumb|500px| Рисунок 4. Прогнозируемые PlaneNet параметры по одной rgb картинке: cегметация плоскости, параметры плоскостей, неплоская карта глубины<ref name="img4"> Chen Liu, Jimei Yang, Duygu Ceylan, Ersin Yumer, Yasutaka Furukawa "PlaneNet: Piece-wise Planar Reconstruction from a Single RGB Image" Figure 2.</ref>.]]
* '''Параметры плоскостей''': пытаемся предсказать количество плоскостей $K$, а после ищем на изображение $K $ плоских поверхностей, каждая поверхность задаётся тремя параметрами<math>P_i</math>: нормальная, прямая и сдвиг. Функцию ошибки определим следующим образом: <math>L = \sum_{i=1}^{K} \min_{j \in [1, \hat K]} \| \hat P_j - P_i \|</math>, где <math>\hat K, \hat P_i</math> и <math>K, P_i</math>, предсказанные и реальные количество и параметры плоскостей, соответственно.
* [[Сегментация изображений|'''Сегментация плоскости''']]: ищем группы пикселей, каждая из которых характеризует один смысловой объект. Используем перекрёстную энтропию<ref name="cross-entropy"> О перекрёстной энтропии [https://ml-cheatsheet.readthedocs.io/en/latest/loss_functions.html]</ref>, как функцию потерь.
* '''Неплоская карта глубины''': ищем одно-канальную (или неплоскую) карту глубины, то есть карту глубины, где каждый пиксель, либо на глубине 0, либо на глубине 1.
Авторы обучали и тестировали данные на NYUv2<ref>Датасет NYUv2[https://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html]</ref>.
=== Обучение без учителя поиска карты глубины из видео (2017) ===
Авторы данной статьи <ref name="cvrp_dnn">Tinghui Zhou, Matthew Brown, Noah Snavely, David G. Lowe "Unsupervised Learning of Depth and Ego-Motion from Video" [https://arxiv.org/abs/1704.07813v2]</ref> предлагают методику оценки глубины одной картинки без учителя и движения камеры из беспорядочной видео нарезки.
[[Файл:dnnDnn.pngjpeg|thumb|400px| Рисунок 5. Aрхитектура сети на базе DispNet <ref name="cvrp">Tinghui Zhou, Matthew Brown, Noah Snavely, David G. Lowe "Unsupervised Learning of Depth and Ego-Motion from Video" Figure 4</ref>]]
Будем использовать сверточные нейронные сети c глубиной одного вида и многовидовой камерой из неупорядоченного видеоряда. Метод базируется на синтезе видов. Сеть загружает фото объекта в качестве данных ввода и выводит карту глубины на каждый пиксельглубину пикселя. Вид объекта может быть синтезирован исходя из глубины на каждый пиксель каждого пикселя снимка позиционирования и четкости ближнего вида. Синтез может быть дифференцирован с CNN по геометрии и модулям позиционирования.
Авторы взяли на вооружение архитектуру DispNet<ref name="dispNet"> Nikolaus Mayer, Eddy Ilg, Philip Hausser, Philipp Fischer "A Large Dataset to Train Convolutional Networks
for Disparity, Optical Flow, and Scene Flow Estimation" [https://arxiv.org/pdf/1512.02134.pdf]</ref>, которая сконструирована в виде енкодера - энкодера и декодера с пропущенными соединениями и многомасштабными блоками предсказания. Функция активации ReLU отслеживает все сверточные слои кроме предсказанных.Вид объекта со всех источников формирует входные данные в сеть позиционной оценки. На выходе получается относительная позиция между видом объекта и видом каждого источника. Сеть состоит из двух 7 шаговых сверток за которым следует свертка 1 х 1. За исключением последнего слоя свертки, где применяется нелинейная активация, все другие отслеживаются функцией активации ReLU. Сеть объяснимых предсказаний дает доступ к первым пяти закодированным слоям сети позиционирования. За ней следуют 5 слоев обратной свертки с многомасштабными блоками предсказаний. Кроме слоев предсказаний все уровни свертки и обратной свертки отслеживаются ReLU. Авторы проверяли данную методику на KITTY<ref> Датасет kitty[http://www.cvlibs.net/datasets/kitti/]</ref>.
=== Неконтролируемая оценка глубины монокуляра с консистенцией слева направо (2017) ===
[[Файл:Samplers.pngjpg|thumb|240px| Рисунок 6. Примерная архитектура сети с консистенцией слева направо <ref name="cvrp2017">Clément Godard, Oisin Mac Aodha, Gabriel J. Brostow "Unsupervised Monocular Depth Estimation with Left-Right Consistency" Figure 3 </ref>]]
В данной работе<ref name="leftrigth"> Clément Godard, Oisin Mac Aodha, Gabriel J. Brostow "Unsupervised Monocular Depth Estimation with Left-Right Consistency" [https://arxiv.org/abs/1609.03677v3]</ref> предлагается сверточная нейронная сеть, обученная выполнять оценку глубины одного изображения без реальных данных. Авторы предлагают сетевую архитектуру, которая выполняет сквозную оценку глубины изображения, полученного с 1 камеры, без учителя, что обеспечивает согласованность глубины слева направо внутри сети.
Сеть оценивает глубину, выводя смещения, которые искажают левое изображение, чтобы соответствовать правому. Левое входное изображение используется для вывода смещений слева направо и справа налево. Сеть генерирует предсказанное изображение с обратным отображением с помощью билинейного сэмплера. Это приводит к полностью дифференциальной модели формирования изображения.
Сверточная архитектура вдохновлена так же DipsNetDispNet'ом. Она состоит из двух частей—кодера и декодера. Декодер использует пропуск соединений из блоков активации кодера, чтобы распознавать детали с высоким разрешением. Сеть предсказывает две карты смещений — слева направо и справа налево.В процессе обучения сеть генерирует изображение путем выборки пикселей из противоположного стереоизображения. Модель формирования изображения использует сэмплер изображений из пространственной трансформаторной сети (STN) для выборки входного изображения с помощью карты смещений. Авторы обучали и тестировали данные на KITTY.
=== Прогнозирование глубины без датчиков: использование структуры для обучения без учителя по монокулярным видео (2019) ===
[[Файл:ego-motion.pngjpeg|thumb|500px| Рисунок 7. Сравнение обычного метода построения карты глубин с помощью эго-движения и предложенного в статье, который использует движения для различных 3-D 3D объектов <ref name="aaaif">Vincent Casser, Soeren Pirk, Reza Mahjourian, Anelia Angelova "Depth Prediction Without the Sensors: Leveraging Structure for Unsupervised Learning from Monocular Videos" Figure 2 </ref>]]
'''Визуальная одометрия''' <ref name="визуальная одометрия">Статья о визуальной одометрии[https://en.wikipedia.org/wiki/Visual_odometry]</ref> {{---}} метод оценки положения и ориентации робота или иного устройства в пространстве с помощью анализа последовательности изображений, снятых установленной на нем камерой. Данная статья <ref name="aaai"> Vincent Casser, Soeren Pirk, Reza Mahjourian, Anelia Angelova "Depth Prediction Without the Sensors: Leveraging Structure for Unsupervised Learning from Monocular Videos" [https://arxiv.org/abs/1811.06152v1]</ref> посвящена задаче обучения без учителя глубины сцены и эго-движения визуальной одометрии робота, где наблюдение обеспечивается видеозаписями с одной камеры. Это делается путем введения геометрической структуры в процесс обучения. Он включает в себя моделирование сцены и отдельных объектов, эго-движения одометрии камеры и движения объектов, изучаемых с помощью монокулярных видеовходов. Авторы вводят модель движения объекта, которая имеет ту же архитектуру, что и сеть эго-движенияопределения визуальной одометрии. Она принимает последовательность изображений RGB в качестве входных данных и дополняется предварительно вычисленными масками сегментации экземпляров. Работа модели движения заключается в том, чтобы научиться предсказывать векторы трансформации каждого объекта в трехмерном пространстве. Это создает видимость наблюдаемого объекта в соответствующем целевом кадре. Авторы проверяли прогнозирование глубины на KITTY.
== См. также ==
Анонимный участник

Навигация