Изменения

Перейти к: навигация, поиск

Синтетические наборы данных

853 байта добавлено, 24 январь
м
Нет описания правки
* Излишняя «стерильность» получаемых данных: в общем случае неизвестно, какими могут быть выбросы в реальных данных<ref>Если выбросы известны, то проблема может быть решена путём настройки параметров генератора.</ref>.
 
[[Файл:Nvidia-drive-sample.png|400px|thumb|right|Рисунок 9. Примеры миров, сгенерированных NVIDIA DRIVE<ref name="nvidia">[https://www.nvidia.com/content/dam/en-zz/Solutions/deep-learning/resources/accelerating-ai-with-synthetic-data-ebook/accelerating-ai-with-synthetic-data-nvidia_web.pdf El Emam, K. Accelerating AI with Synthetic Data] — Beijing, Boston, Farnham, Sebastopol, Tokyo: O'Reilly Media, Inc., 2020.</ref>.]]
 
Синтетические данные активно используются при обучении алгоритмов управления [[wikipedia:Self-driving car|автономным транспортом]]. Эти алгоритмы решают две задачи: сначала [[Обнаружение и обработка дорожных знаков и пешеходов|выявляют окружающие объекты]] — машины, дорожные знаки, пешеходов, а затем принимают решение о направлении и скорости дальнейшего движения. При реализации таких алгоритмов наиболее важно поведение транспортного средства в критических ситуациях, таких как помехи на дороге или некорректные показания сенсоров — от этого могут зависеть жизни людей. В реальных данных же, наоборот, в основном присутствуют штатные ситуации.
 
Для решения этой проблемы компания NVIDIA разработала платформу NVIDIA DRIVE Constellation<ref name="nvidia" />, которая состоит из двух серверов. Один из них исполняет роль обучаемого транспортного средства, а второй непрерывно генерирует для первого различные «миниатюрные миры», включающие в себя симуляцию вывода с камеры, радара и лидаров. В обучении используется два режима — симуляция после восприятия (англ. ''postperception simulation'') и сквозная симуляция (англ. ''end-to-end simulation''). В режиме симуляции объектов из сгенерированных миров (см. рисунок 9) обучаемому алгоритму передаётся список объектов и их подробное описание, в свою очередь алгоритм должен выбрать дальнейшие действия автомобиля. В режиме симуляции мира на вход алгоритму подаются показания датчиков из сгенерированного мира, и алгоритм должен также распознать с помощью этих показаний присутствующие вокруг объекты и их характеристики. Этот режим полезен тем, что он более похож на реальный мир и учитывает помехи, возникающие на сенсорах.
 
Одно из самых наглядных применений аугментации данных — алгоритмы восстановления изображений. Для работы таких алгоритмов исходный набор изображений расширяется их копиями, к которым применяются некие преобразования из фиксированного набора. На основе полученных изображений генерируется набор, в котором входными данными считаются полученные изображения, а целевыми — исходные. В самом деле, получить реальные данные для такой задачи — фотографию и её же искажённую копию — довольно затруднительно, а применение таких преобразований довольно легко автоматизируется. Таким образом, если исходные изображения достаточно хорошо описывали источник данных, то полученный набор данных можно применять для обучения алгоритма восстановления изображений, устраняющего применённые преобразования.
 
Также с помощью синтетических наборов данных можно упростить обучение алгоритмов [[Компьютерное зрение|компьютерного зрения]], решающих задачи [[Сегментация изображений|семантической сегментации]], [[Компьютерное зрение#Идентификация|поиска]] и [[Компьютерное зрение#Распознавание объектов|локализации]] объектов. В данном случае подходят наборы, в которых искомые объекты определённым образом наносятся на фоновое изображение. В частности, таким объектом может быть текст — тогда с помощью полученного набора может быть решена задача [[Распознавание текста на изображении|распознавания текста на изображении]].
 
Синтетические данные используются и для создания алгоритмов '''реидентификации''' — определения, действительно ли на двух изображениях один и тот же человек. Эти алгоритмы могут использоваться для нахождения людей на записях с камер, на пограничных пунктах и так далее. В этом случае реальные данные собрать довольно сложно, потому что требуется найти много фотографий одних и тех же людей в разных позах, с разных ракурсов и в разной одежде.
== Виды генерации ==
=== TextSharpener ===
Одно из самых наглядных применений аугментации данных — алгоритмы восстановления изображений. Для работы таких алгоритмов исходный набор изображений расширяется их копиями, к которым применяются некие преобразования из фиксированного набора. На основе полученных изображений генерируется набор, в котором входными данными считаются полученные изображения, а целевыми — исходные. В самом деле, получить реальные данные для такой задачи — фотографию и её же нечеткую копию — довольно затруднительно, а применение таких преобразований довольно легко автоматизируется. Таким образом, если исходные изображения достаточно хорошо описывали источник данных, то полученный набор данных можно применять для обучения алгоритма восстановления изображений, устраняющего применённые преобразования. Один из известных алгоритмов такого рода — TextSharpenerАлгоритм TextSharpener<ref name="TextSharpener"/>. Этот алгоритм, разработанный в Университете Исландии и основанный на [[Сверточные нейронные сети|свёрточной нейронной сети]], позволяет убирать размытие текста на изображениях (см. рисунок 1). Для подготовки набора данных, который подошёл для обучения такого алгоритма, хватило [https://github.com/gardarandri/TextSharpener/blob/master/generator/GenImages.py тривиального скрипта] на Python, генерирующего случайные прямоугольники и надписи на них, а затем размывавшего их.
[[Файл:Jefferson_Graham_on_Manhattan_Beach_Pier.jpeg|200px|thumb|left|Рисунок 2. Фотография, сделанная широкоугольной камерой<ref>https://commons.wikimedia.org/wiki/File:Jefferson_Graham_on_Manhattan_Beach_Pier.jpg — Retrieved January 24, 2021</ref>.]]
=== FlyingChairs ===
Набор данных FlyingChairs<ref name="FlyingChairs" /> и его производные представляют из себя наборы изображений, на которые искусственно добавлены предметы в движении (например, стулья, как на рисунке 4). Эти наборы данных применяются при решении таких задач компьютерного зрения, как [[Сегментация изображений|семантическая сегментация]], в алгоритмах [[Компьютерное зрение#Идентификация|поиск]] и [[Компьютерное зрение#Распознавание объектов|локализациякомпьютерного зрения]] объекта, а также более сложных, например, в частности для поиска движения.
FlyingChairs строится следующим образом: авторы выбрали несколько сотен изображений с фотохостинга [https://flickr.com Flickr] из категорий «город», «ландшафт», «горы». Части этих изображений использовались в качестве фона. Далее на них накладывались стулья<ref name="fc-chairs">Aubry M., Maturana D., Efros A., Russell B., Sivic J. Seeing 3d chairs: exemplar part-based 2d-3d alignment using a large dataset of cad models — InCVPR, 2014</ref>, для каждого стула были представлены 62 различных угла обзора.
=== VC-Clothes ===
Набор данных VC-Clothes<ref name="VC-Clothes"/> создан для разработки алгоритмов '''реидентификации''' — определения, действительно ли на двух изображениях один и тот же человек. Эти алгоритмы могут использоваться для нахождения людей на записях с камер, на пограничных пунктах и так далее. VC-Clothes Он представляет из себя сгенерированные изображения одинаковых людей в разной одежде и на разном фоне. Помимо реидентификации, этот набор данных также может быть использован для решения задачи семантической [[Сегментация изображений|сегментации]], для отделения пикселей, соответствующих одежде, от пикселей, соответствующих лицу персонажа.
Для создания набора была использована известная компьютерная игра Grand Theft Auto V. Эта игра поддерживает детальную настройку внешнего вида персонажей, произвольные параметры окружающей среды (освещение, угол обзора) и большое количество встроенных сцен — множество улиц, зданий и других мест. При генерации фиксируется маршрут каждого персонажа и позиции камер. Не со всех ракурсов распознаётся непосредственно лицо (см. рисунок 5), но человек вполне может быть распознан по полу, возрасту, фигуре, причёске и другим характеристикам. В итоге набор изображений включает 512 персонажей, 4 сцены и в среднем 9 изображений для каждого персонажа и каждой сцены.
Изображения генерируются с помощью игрового движка Unity 5, доработанного авторами UnityEyes для значительного ускорения рендеринга. Используются 20 трёхмерных изображений головы людей различного возраста, с различным цветом кожи и формой глаз. Помимо этого, используются HDR-панорамы для получения естественного окружающего зеркального отблеска в глазах.
 
[[Файл:Nvidia-drive-sample.png|400px|thumb|right|Рисунок 9. Примеры миров, сгенерированных NVIDIA DRIVE<ref name="nvidia">[https://www.nvidia.com/content/dam/en-zz/Solutions/deep-learning/resources/accelerating-ai-with-synthetic-data-ebook/accelerating-ai-with-synthetic-data-nvidia_web.pdf El Emam, K. Accelerating AI with Synthetic Data] — Beijing, Boston, Farnham, Sebastopol, Tokyo: O'Reilly Media, Inc., 2020.</ref>.]]
 
=== NVIDIA DRIVE ===
 
Автономный транспорт — это вид транспорта, управление которым осуществляется без участия человека при помощи оптических датчиков, систем геолокации и компьютерных алгоритмов<ref>Self-driving car — https://en.wikipedia.org/wiki/Self-driving_car — Retrieved January 8, 2021</ref>. Алгоритму управления транспортным средством нужно решить две задачи: сначала [[Обнаружение и обработка дорожных знаков и пешеходов|выявить окружающие объекты]] — машины, дорожные знаки, пешеходов, а затем принять решение о направлении и скорости дальнейшего движения. При реализации таких алгоритмов наиболее важно поведение транспортного средства в критических ситуациях, таких как помехи на дороге или некорректные показания сенсоров — от этого могут зависеть жизни людей. В реальных данных же, наоборот, в основном присутствуют штатные ситуации.
 
Для решения этой проблемы компания NVIDIA разработала платформу NVIDIA DRIVE Constellation<ref name="nvidia" />, которая состоит из двух серверов. Один из них исполняет роль обучаемого транспортного средства, а второй непрерывно генерирует для первого различные «миниатюрные миры», включающие в себя симуляцию вывода с камеры, радара и лидаров.
 
В обучении компания использует два режима — симуляция после восприятия (англ. ''postperception simulation'') и сквозная симуляция (англ. ''end-to-end simulation''). В режиме симуляции объектов из сгенерированных миров (см. рисунок 9) обучаемому алгоритму передаётся список объектов и их подробное описание, в свою очередь алгоритм должен выбрать дальнейшие действия автомобиля. В режиме симуляции мира на вход алгоритму подаются показания датчиков из сгенерированного мира, и алгоритм должен также распознать с помощью этих показаний присутствующие вокруг объекты и их характеристики. Этот режим полезен тем, что он более похож на реальный мир и учитывает помехи, возникающие на сенсорах.

Навигация