Изменения

Перейти к: навигация, поиск

Теорема Дирака

2406 байт добавлено, 25 февраль
Отмена правки 80673, сделанной 193.176.84.164 (обсуждение)
|about=Дирак
|statement=
КТО ИЗ 8М ДАЖЕ НЕ ПЫТАЙТЕСЬ СПИСАТЬ!Пусть <tex>G</tex> {{---}} неориентированный граф и <tex>\delta</tex> {{---}} минимальная степень его вершин. Если <tex>n \geqslant 3</tex> и <tex>\delta \geqslant n/2</tex>, то <tex>G</tex> {{---}} [[Гамильтоновы графы|гамильтонов граф]].|proof=Пусть <tex>C</tex> {{---}} цикл наибольшей длины в графе <tex>G</tex>. По лемме его длина <tex>l \geqslant \delta + 1</tex>. Если <tex>C</tex> - гамильтонов, то теорема доказана. Предположим обратное, т. е. <tex>G \backslash C \ne \varnothing</tex>. Рассмотрим путь <tex>P = x \dots y : P \cap C = \{y\}</tex> наибольшей длины <tex>m</tex>. Заметим, что по условию <tex>\delta \geqslant n/2</tex>, а значит <tex>\delta \geqslant n - \delta > n - l = |V(G \backslash C)|</tex>. Поэтому каждая вершина из <tex>G \backslash C</tex> смежна с некоторыми вершинами из <tex>C</tex>.Заметим, что вершина <tex>x</tex> не может быть смежна:* с вершинами из <tex>C</tex>, расстояние от которых до <tex>y</tex> (по <tex>C</tex>) не превышает m. Действительно, пусть вершина <tex>v \in C</tex> и расстояние от <tex>v</tex> до <tex>y</tex> по циклу меньше либо равно <tex>m</tex>. Тогда этот участок цикла можно заменить на <tex>v \rightarrow x \rightarrow P \rightarrow y</tex>, длина которого <tex>m + 1</tex>. Таким образом образуется цикл большей длины, что противоречит предположению о максимальности цикл <tex>C</tex>.* двум смежным вершинам на <tex>C</tex>. Пусть <tex>u, v \in C</tex> и <tex>\{(u, v), (u, x), (x, v)\} \in E</tex>. Тогда заменив ребро <tex>(u, v)</tex> на <tex>u \rightarrow x \rightarrow v</tex>, увеличим длину цикла на <tex>1</tex>.* вершинам из <tex>G \backslash (C \cup P)</tex>, поскольку <tex>P</tex> максимальный. Получаем <tex>deg\ x \leqslant m + (l - 2m)/2 = l/2 < n/2 \leqslant \delta</tex>. Противоречие.
}}
Анонимный участник

Навигация