Редактирование: Собственные векторы и собственные значения

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 6: Строка 6:
 
|neat =  
 
|neat =  
 
|definition=
 
|definition=
Пусть <tex>\mathcal{A}\colon X \to X</tex>  - линейный оператор (ЛО)<br>
+
Пусть <tex>\mathcal{A}:X \to X</tex>  - линейный оператор (ЛО)<br>
  <tex>x\ne 0_x</tex> называется '''собственным вектором''' <tex>\mathcal{A}</tex>, если <tex>x \in L</tex>, где <tex>L</tex> {{---}} [[Инвариантные подпространства | инвариантное подпространство]] <tex>\mathcal{A}</tex> и <tex>\dim L = 1</tex>  
+
  <tex>x\ne 0_X</tex> называется '''собственным вектором''' <tex>\mathcal{A}</tex>, если <tex>x \in L</tex>, где <tex>L</tex> - [[Инвариантные подпространства | инвариантное подпространство]] <tex>\mathcal{A}</tex> и <tex>\dim L = 1</tex>  
 
}}
 
}}
  
Строка 14: Строка 14:
 
|neat =  
 
|neat =  
 
|definition=
 
|definition=
Пусть <tex>\mathcal{A}\colon X \to X</tex> <br> <tex>x\ne 0_X</tex> называется '''собственным вектором''' <tex>\mathcal{A}</tex>, если существует <tex>\lambda \in F \colon \mathcal{A}x = \lambda x</tex>
+
Пусть <tex>\mathcal{A}:X \to X</tex> <br> <tex>x\ne 0_X</tex> называется '''собственным вектором''' <tex>\mathcal{A}</tex>, если существует <tex>\lambda \in F : \mathcal{A}x = \lambda x</tex>
 
}}
 
}}
  
Строка 24: Строка 24:
 
Предыдущие 2 определения эквивалентны.
 
Предыдущие 2 определения эквивалентны.
 
|proof=
 
|proof=
<math> (1) \Rightarrow (2) \colon x \in L, \dim L=1 \Rightarrow \mathcal{A}x \in L \ (</math>т. к. <math>x \ne 0_X \Rightarrow</math> базис <math>L = \{x\}) \Rightarrow \mathcal{A}x=\lambda x</math> (единственным образом) <br>
+
<math> (1) \Rightarrow (2) : x \in L, \dim L=1 \Rightarrow \mathcal{A}x \in L \ (</math>т. к. <math>x \ne 0_X \Rightarrow</math> базис <math>L = \{x\}) \Rightarrow \mathcal{A}x=\lambda x</math> (единственным образом) <br>
<tex> (1) \Leftarrow (2) \colon \exists \lambda: \mathcal{A}x = \lambda x \Rightarrow x \in</tex> одномерному подпространству <tex>L</tex>, где <tex>L =</tex> линейная оболочка <tex>\{x\}, \mathcal{A}x = \lambda x \in L</tex>
+
<tex> (1) \Leftarrow (2) : \exists \lambda: \mathcal{A}x = \lambda x \Rightarrow x \in</tex> одномерному подпространству <tex>L</tex>, где <tex>L =</tex> линейная оболочка <tex>\{x\}, \mathcal{A}x = \lambda x \in L</tex>
 
}}
 
}}
  
Строка 54: Строка 54:
 
|proof=
 
|proof=
 
1) База: рассмотрим <tex>\lambda \leftrightarrow x_1 \ne 0_x\ \{x_1\}</tex> - ЛНЗ набор.<br>
 
1) База: рассмотрим <tex>\lambda \leftrightarrow x_1 \ne 0_x\ \{x_1\}</tex> - ЛНЗ набор.<br>
2) <tex>\{x_1,x_2, ... , x_{m-1}\} \leftrightarrow \{\lambda _1, ... \lambda _ {m-1} \}</tex> - ЛНЗ.  
+
2) <tex>\{x_1,x_2, ... , x_{m-1}\} \leftrightarrow \{\lambda _1, ... \lambda _ m-1 \}</tex> - ЛНЗ.  
 
Рассмотрим <tex>\{x_1, ..., x_m \} </tex>- докажем, что тоже ЛНЗ.
 
Рассмотрим <tex>\{x_1, ..., x_m \} </tex>- докажем, что тоже ЛНЗ.
  
Строка 69: Строка 69:
 
<tex>\Rightarrow </tex> все <tex>\alpha_i = 0</tex> <tex>\Rightarrow \sum\limits_{i=1}^m \alpha_i x_i = 0_x</tex>
 
<tex>\Rightarrow </tex> все <tex>\alpha_i = 0</tex> <tex>\Rightarrow \sum\limits_{i=1}^m \alpha_i x_i = 0_x</tex>
  
<tex>\Rightarrow \alpha_m x_m = 0_x </tex>, где <tex>x_m \ne 0_x</tex> <tex>\Rightarrow \alpha_m=0</tex>, т.е. набор ЛНЗ.
+
<tex>\Rightarrow \alpha_m x_m = 0_x </tex>, где <tex>x_m \ne 0</tex> <tex>\Rightarrow \alpha_m=0</tex>, те набор ЛНЗ.
 
}}
 
}}
  
Строка 78: Строка 78:
 
|about=
 
|about=
 
|statement=
 
|statement=
Множество всех собственных векторов, отвечающих одному и тому же собственному значению оператора <tex>\mathcal{A}</tex>, образует подпространство пространства <tex>X</tex>.
+
Множество всех собственных векторов, отвечающих одному и тому же собственному значению оператора <tex>A</tex>, образует подпространство пространства <tex>X</tex>.
 
|proof=
 
|proof=
1) Если <tex>x</tex> {{---}} св, то и <tex> \alpha x</tex> {{---}} тоже св.
+
Как утверждается, несложное упражнение.
 
+
Я вообще думал, что это определение. В википедии без доказательства идет. Как доказать - не знаю.
2) Если <tex>x,y</tex> {{---}} св, то и <tex>x+y</tex> {{---}} тоже св.
 
 
 
Из 1 и 2 <tex>\Rightarrow</tex> что лемма доказана (по определению подпространства)
 
 
 
 
}}
 
}}
  

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)