Редактирование: Сопряжённый оператор

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 1: Строка 1:
 
{{В разработке}}
 
{{В разработке}}
 
[[Спектр линейного оператора|<<]][[Компактный оператор |>>]]
 
  
 
Все рассматриваемые далее пространства считаем Банаховыми.
 
Все рассматриваемые далее пространства считаем Банаховыми.
Строка 12: Строка 10:
  
 
== Естественное вложение ==
 
== Естественное вложение ==
{{Утверждение
+
Покажем, что между <tex> E </tex> и <tex> E^{**} </tex> существует так называемый '''естественный изоморфизм''', сохраняющий норму точки.
|statement=
+
 
Между <tex> E </tex> и <tex> E^{**} </tex> существует так называемый '''естественный изоморфизм''', сохраняющий норму точки.
 
|proof=
 
 
Введем <tex> F_x </tex> следующим образом: <tex>\forall x \in E : F_x (f) = f(x), f \in E^{*} </tex>.
 
Введем <tex> F_x </tex> следующим образом: <tex>\forall x \in E : F_x (f) = f(x), f \in E^{*} </tex>.
  
<tex> F_x : E^{*} \to \mathbb{R} </tex> — функционал, заданный на <tex>E^{*}</tex>, то есть <tex> F_x \in E^{**} </tex>.
+
<tex> F_x : E^{*} \to \mathbb{R} </tex> — функционал, заданный на <tex>E</tex>, то есть <tex> F_x \in E^{**} </tex>.
  
 
Тогда само <tex> F </tex> отображает <tex> E </tex> в <tex> E^{**} </tex>.
 
Тогда само <tex> F </tex> отображает <tex> E </tex> в <tex> E^{**} </tex>.
Строка 26: Строка 22:
 
<tex> | F_x(f) | = |f(x)| \le \| f \| \| x \| </tex>, откуда <tex> \| F_x \| \le \| x \| </tex>.
 
<tex> | F_x(f) | = |f(x)| \le \| f \| \| x \| </tex>, откуда <tex> \| F_x \| \le \| x \| </tex>.
  
С другой стороны, по следствию из теоремы Хана-Банаха, для любого <tex> x_0 \in E </tex> существует <tex> f_0 \in E^* </tex>, такое, что выполняются два условия:
+
С другой стороны, по теореме Хана-Банаха, <tex> \forall x_0 \in E, \exists f_0 \in E^* </tex>, что выполняются два условия:
 
# <tex> f_0(x_0) = \| x_0 \| </tex>
 
# <tex> f_0(x_0) = \| x_0 \| </tex>
 
# <tex> \| f_0 \| = 1 </tex>.
 
# <tex> \| f_0 \| = 1 </tex>.
Строка 33: Строка 29:
  
 
Значит, получившееся преобразование <tex> x \mapsto F_x </tex> — изометрия, <tex> \| x \| = \| F_x \| </tex>, получили '''естественное вложение''' <tex> E </tex> в <tex> E^{**} </tex>.
 
Значит, получившееся преобразование <tex> x \mapsto F_x </tex> — изометрия, <tex> \| x \| = \| F_x \| </tex>, получили '''естественное вложение''' <tex> E </tex> в <tex> E^{**} </tex>.
}}
 
  
{{Определение
 
|definition=
 
 
<tex> E </tex> называется '''рефлексивным''', если <tex> E </tex> будет совпадать с <tex> E^{**} </tex> при таком отображении.
 
<tex> E </tex> называется '''рефлексивным''', если <tex> E </tex> будет совпадать с <tex> E^{**} </tex> при таком отображении.
}}
 
  
 
Например, гильбертово пространство <tex> H </tex> рефлексивно (следует из теоремы Рисса об общем виде линейного функционала).
 
Например, гильбертово пространство <tex> H </tex> рефлексивно (следует из теоремы Рисса об общем виде линейного функционала).
  
<tex> C[0, 1] </tex> не является рефлексивным.
+
<tex> C[0, 1] </tex> не является рефлексивным.
  
 
== Сопряженный оператор ==
 
== Сопряженный оператор ==
Строка 64: Строка 56:
 
Получили, что <tex> \| A^* (\varphi) \| \le \| A \| \| \varphi \| </tex>, откуда <tex> \| A^* \| \le \| A \| </tex>.
 
Получили, что <tex> \| A^* (\varphi) \| \le \| A \| \| \varphi \| </tex>, откуда <tex> \| A^* \| \le \| A \| </tex>.
  
Для доказательства в обратную сторону используем [[Теорема Хана-Банаха#hbnorm|следствие из теоремы Хана-Банаха]]:
+
Для доказательства в обратную сторону используем теорему Хана-Банаха:
  
По определению нормы оператора: <tex> \forall \varepsilon > 0 \, \exists x: \| x \| = 1 \implies \| A \| - \varepsilon < \| Ax \| </tex>.
+
По определению нормы: <tex> \forall \varepsilon > 0 \, \exists x: \| x \| = 1 \implies \| A \| - \varepsilon < \| Ax \| </tex>.
  
<tex> Ax \in F </tex>, по следствию из теоремы Хана-Банаха подберем <tex> \varphi_0 \in F^*, \| \varphi_0 \| = 1: \varphi_0 (Ax) = \| Ax \| </tex>.
+
<tex> Ax \in F </tex>, по теореме Хана-Банаха подберем <tex> \varphi_0 \in F^*, \| \varphi_0 \| = 1: \varphi_0 (Ax) = \| Ax \| </tex>.
  
<tex> | A^*(\varphi_0, x) | = | \varphi_0(Ax) | = \| Ax \| > \| A \| - \varepsilon </tex>.
+
<tex> \| A^*(\varphi_0, x) \| = | \varphi_0(Ax) | = \| Ax \| > \| A \| - \varepsilon </tex>.
  
<tex> | A^*(\varphi_0, x) | \le \| A^*(\varphi_0) \| \| x \| = \| A^*(\varphi_0) \| \le \| A^* \| \| \varphi_0 \| = \| A^* \| </tex>.
+
<tex> \| A^*(\varphi_0, x) \| \le \| A^*(\varphi_0) \| \| x \| = \| A^*(\varphi_0) \| \le \| A^* \| \| \varphi_0 \| = \| A^* \| </tex>.
  
 
Соединяя эти два неравенства, получаем, что <tex> \forall \varepsilon > 0: \| A^* \| > \| A \| - \varepsilon </tex>.
 
Соединяя эти два неравенства, получаем, что <tex> \forall \varepsilon > 0: \| A^* \| > \| A \| - \varepsilon </tex>.
Строка 84: Строка 76:
 
Возьмем любое гильбертово пространство <tex> H </tex>, <tex> A : H \to H </tex>.
 
Возьмем любое гильбертово пространство <tex> H </tex>, <tex> A : H \to H </tex>.
  
<tex> \forall \varphi \in H^* </tex> по теореме Рисса об общем виде линейного функционала в <tex> H </tex> существует единственный
+
<tex> \forall \varphi \in H^* </tex> по теореме Рисса об общем виде линейного функционала в <tex> H </tex> существует  
 
<tex> z : \varphi (y) = \langle y, z \rangle, \| \varphi \| = \| z \| </tex>.
 
<tex> z : \varphi (y) = \langle y, z \rangle, \| \varphi \| = \| z \| </tex>.
  
Строка 98: Строка 90:
 
{{Определение
 
{{Определение
 
|definition=
 
|definition=
Оператор <tex> A </tex> в гильбертовом пространстве называется '''самосопряженным''', если <tex> A = A^* </tex>
+
Оператор <tex> A </tex> называется '''самосопряженным''', если <tex> A = A^* </tex>
 
}}
 
}}
  
Строка 111: Строка 103:
 
Построим сопряженный оператор:
 
Построим сопряженный оператор:
  
По теореме об общем виде линейного функционала в <tex> L_p </tex>,
+
По теореме об общем виде линейного функционала в <tex> L_p </tex> {{TODO|t=ее у нас в курсе не было. КАК НЕ БЫЛО-ТО???777 НИЧЕГО ШТО ЭТО ГИЛЬБЕРТОВО ПРОСТРАНСТВО!!?? -- Вот только <tex>L_p</tex> не совсем гильбертово, ага? (<tex>p \neq 2</tex>)}},
  
 
<tex> \forall \varphi \in E^*, x \in E: \varphi(x) = \int\limits_0^1 y(t) x(t) dt, y \in L_q </tex>, где <tex> \frac 1p + \frac 1q = 1 </tex> (<tex> p </tex> и <tex> q </tex> называются '''сопряженными показателями''').
 
<tex> \forall \varphi \in E^*, x \in E: \varphi(x) = \int\limits_0^1 y(t) x(t) dt, y \in L_q </tex>, где <tex> \frac 1p + \frac 1q = 1 </tex> (<tex> p </tex> и <tex> q </tex> называются '''сопряженными показателями''').
Строка 121: Строка 113:
 
Получили, что <tex> A^*(\varphi, x) = \int\limits_0^1 ( \int\limits_0^1 K(s, t) y(s) ds) x(t) dt </tex>. Обозначим <tex> z(t) = \int\limits_0^1 K(s, t) y(s) ds </tex>, тогда <tex> A^* (\varphi) \equiv z </tex>, аналогично <tex> \varphi \equiv y </tex>.
 
Получили, что <tex> A^*(\varphi, x) = \int\limits_0^1 ( \int\limits_0^1 K(s, t) y(s) ds) x(t) dt </tex>. Обозначим <tex> z(t) = \int\limits_0^1 K(s, t) y(s) ds </tex>, тогда <tex> A^* (\varphi) \equiv z </tex>, аналогично <tex> \varphi \equiv y </tex>.
  
<tex> A^* </tex> {{---}} интегральный оператор из <tex> L_q </tex>, имеющий ядро <tex> K^*(s, t) = K(t, s) </tex>. В частности, если ядро симметрично (<tex> K(s, t) = K(t, s) </tex>) и <tex> p = q = 2 </tex>, то <tex> A = A^* </tex>.
+
<tex> A^* </tex> {{---}} интегральный оператор из <tex> L_q </tex>, имеющий ядро <tex> K^*(s, t) = K(t, s) </tex>. В частности, если ядро симметрично (<tex> K(s, t) = K(t, s) </tex>), и <tex> k = 2 </tex>, то <tex> A = A^* </tex>
  
 
== Ортогональное дополнение ==
 
== Ортогональное дополнение ==
  
Важное значение имеет ортогональное дополнение (в любом нормированном пространстве):
+
Важное значение имеет '''ортогональное дополнение''' (в любом нормированном пространстве):
  
{{Определение
+
<tex> E </tex> {{---}} НП, <tex> S \subset E^* </tex>.
|definition=
 
Пусть <tex> E </tex> {{---}} НП, <tex> S \subset E^* </tex>.
 
  
<tex> S^{\bot} = \{ x \in E \mid \forall f \in S: f(x) = 0 \} </tex> {{---}} '''ортогональное дополнение''' <tex> S </tex>.
+
<tex> S^{\bot} = \{ x \in E \mid \forall f \in S: f(x) = 0 \} </tex> {{---}} ортогональное дополнение <tex> S \subset E^* </tex>.
  
Аналогично, если <tex> T \subset E </tex>, то <tex> T^{\bot} = \{ f \in E^* \mid \forall x \in T: f(x) = 0 \} </tex>.
+
Аналогично определяется для <tex> T \subset E : T^{\bot} = \{ f \in E^* \mid \forall x \in T: f(x) = 0 \} </tex>.
}}
 
  
 
{{Утверждение
 
{{Утверждение
|statement= <tex> \{ 0 \} = (E^*)^{\bot}, \{ \mathbf{0} \} = E^{\bot} </tex>.
+
|statement= <tex> \{ 0 \} = (E^*)^{\bot}, \{ 0 \} = E^{\bot} </tex>.
 
|proof=
 
|proof=
  
 
Оба включения <tex> \subset </tex> очевидны по определению. В обратную сторону:
 
Оба включения <tex> \subset </tex> очевидны по определению. В обратную сторону:
  
# Пусть <tex> x \in (E^*)^{\bot} </tex>, тогда <tex> \forall f \in E^*: f(x) = 0 </tex>. Предположим, что <tex> x \neq 0 </tex>, тогда по [[Теорема Хана-Банаха|следствию из теоремы Хана-Банаха]], для такого <tex>x</tex>, найдется функционал <tex>f: f(x) = \| x \| \neq 0 </tex>, получили противоречие, что <tex> x \in (E^*)^{\bot} </tex>.
+
Пусть <tex> x \in (E^*)^{\bot} </tex>, тогда <tex> \forall f \in E^*: f(x) = 0 </tex>
# Пусть <tex> f \in E^\bot </tex>, тогда <tex> \forall x \in E: f(x) = 0</tex>. Тогда <tex>f</tex> — нулевой функционал по определению.
+
 
 +
Предположим, что <tex> x \neq 0 </tex>, тогда по теореме Хана-Банаха, <tex> \exists f: f(x) = \| x \| \neq 0 </tex>, получили противоречие, что <tex> x \in (E^*)^{\bot} </tex>.
 +
 
 +
Второе включение в обратную сторону доказывается аналогично.
 
}}
 
}}
  
 
== Теоремы о множестве значений оператора ==
 
== Теоремы о множестве значений оператора ==
=== Теорема 1 ===
+
{{TODO|t=придумать нормальный заголовок}}
 +
<wikitex>
 +
Следующие две теоремы — условие разрешимости операторных уравнений. Смысл: $Ax = y$, $y$ — дано, то ответ на вопрос, есть ли решение, состоит в проверке $y \in R(A)$, но можно ограничиться $R(A) = \operatorname{Cl} R(A) \implies R(A) = (\operatorname{Ker}A^*)^\bot$, сопряженный оператор можно построить, ядро поддается конструктивному описанию: $y \in R(A) \iff y \perp \operatorname{Ker} A^*$.
  
{{Теорема
+
Например, $A: \mathbb{R}^m \to \mathbb{R}^n$, $A^* = A^\top : \mathbb{R}^n \to \mathbb{R}^m$. $R(A) = \operatorname{Cl} R(A)$, $Ax = y$, $y$ — дано. Надо смотреть $y \perp \operatorname{Ker} A^*$, то есть $A^\top y = 0$.
|statement= <tex> A \in \mathcal{L}(E,F) \implies \operatorname{Cl} R(A) = (\operatorname{Ker} A^*)^\perp </tex>.
 
|proof =
 
<tex>\subset</tex>:
 
  
<tex>\forall \varphi \in \operatorname{Ker}A^*</tex>, <tex>A^* \varphi = \mathbf{0}</tex>.
+
Далее введем класс бесконечномерных операторов, для которых $R(A)$ — замкнуто, в частности, в этот класс входят интегральные операторы.
  
Пусть <tex>y \in R(A) </tex>, тогда <tex> y = Ax </tex>.
 
  
<tex> \varphi (y) = \varphi(A x) = A^*(\varphi, x) = 0 </tex>, следовательно, <tex> R(A)\subset(\operatorname{Ker}A^*)^\perp</tex>.
+
=== Теорема 1 ===
  
Теперь, пусть <tex>y \in \operatorname{Cl} R(A)</tex>, тогда <tex> y = \lim y_n, y_n \in R(A)</tex>.
+
{{Теорема
 +
|statement= <tex> A \in \mathcal{L}(E,F) \implies \operatorname{Cl} R(A) = (\operatorname{Ker} A^*)^\perp </tex>.
 +
|proof = {{TODO | t = написать доказательство}}
 +
$\varphi \in \operatorname{Ker}A^*$, $A^* \varphi = 0$, $\forall x \in E: A^*(\varphi, x) = 0, A^*(\varphi, x) = \varphi(A x) \implies \varphi(A x) = 0$
  
<tex>\varphi(y_n) = 0, \varphi(y_n) \xrightarrow[]{n \to \infty} \varphi(y) \implies \varphi(y) = 0</tex>, и <tex>\operatorname{Cl}(R(A)) \subset (\operatorname{Ker}(A^*))^\perp</tex>
+
$y \in R(A) \implies y = Ax, \varphi \in \operatorname{Ker} A^* \implies \varphi y = \varphi(A x) = 0 \implies R(A) \subset (\operatorname A^*)^\perp$
  
<tex>\supset</tex>:
+
$y \in \operatorname{Cl} R(A), y = \lim y_n, y_n \in R(A), \varphi \in \operatorname {Ker}^* (A)$ $\varphi(y_n) = 0, \varphi(y_n) \xrightarrow[]{n \to \infty} \varphi(y) \implies \operatorname{Cl}(R(A)) \subset (\operatorname{Ker}(A^*))^\perp$ $\implies y \in (\operatorname{Ker}A^*)^\perp \implies(?) y \in \operatorname{Cl}(R(A))$
  
Надо показать, что <tex>y \in (\operatorname{Ker}A^*)^\perp \implies y \in \operatorname{Cl} R(A)</tex>. Пусть это не так: <tex> y \notin \operatorname{Cl} R(A)</tex>.
+
{{TODO|t=мууть}}
  
Рассмотрим <tex> F_1 = \left\{ z + ty \mid z \in \operatorname{Cl}(R(A)), y \notin \operatorname{Cl}(R(A)), t \in \mathbb{R} \right\} </tex>. <tex>F_1</tex> {{---}} линейное множество в силу линейности  <tex>\operatorname{Cl}(R(A))</tex>.
+
}}
 
 
Покажем, что <tex>F_1</tex> -- подпространство  <tex>F</tex>. Для этого нам осталось проверить замкнутость <tex>F_1</tex>:
 
 
 
Пусть <tex>z_n+t_{n}y \to u  = z + ty</tex>, хотим убедиться в том, что <tex>u \in F_1</tex>.
 
  
Если  <tex> |t_{n}| \le const </tex>, то выберем <tex>t_{n_k}</tex>, стремящееся к какому-то <tex>t</tex>. Из <tex>z_n+t_{n}y \to u,  t_{n_k}y \to ty </tex> получаем <tex> z_n \to z \in \operatorname{Cl}(R(A))</tex>.
 
 
Если допустить, что <tex>t_{n_k} \to \infty</tex>:
 
 
<tex>z_{n_k}+t_{n_k}y \to u</tex>. <tex>z_{n_k}/t_{n_k} + y \to 0 \implies z_{n_k}/t_{n_k} \to -y \implies -y \in \operatorname{Cl}(R(A)) \implies y \in \operatorname{Cl}(R(A))</tex> {{---}} противоречие.
 
 
Таким образом, <tex>\operatorname{Cl}(F_1) = F_1</tex>.
 
 
Построим на <tex>F_1</tex> фунционал <tex>\varphi_0 : \varphi_0(z+ty) = t </tex>, <tex> \varphi_0(z) = 0</tex>. Он, очевидно, непрерывен, а по теореме Хана-Банаха с сохранением непрерывности его можно продолжить на <tex>F: \widetilde{\varphi_0} \in F^*</tex>, причем так, что <tex>\widetilde{\varphi_0}\mid _{F_1} = \varphi_0</tex>.
 
 
Рассмотрим значение <tex>\widetilde{\varphi_0}(y)</tex>:
 
 
* С одной стороны, <tex>\widetilde{\varphi_0}(y) = \varphi_0(y) = \varphi_0(0 + 1 y) = 1</tex>
 
* С другой стороны, <tex>y \in (\operatorname{Ker}A^*)^\perp</tex>, а значит, на любом функционале из ядра <tex>A^*</tex>, в том числе, и на <tex>\widetilde{\varphi_0}</tex>, должно выполняться <tex>\widetilde{\varphi_0}(y) = 0</tex>
 
 
Получили противоречие, следовательно, <tex> y \in \operatorname{Cl}(R(A))</tex>.
 
}}
 
  
 
=== Теорема 2 ===
 
=== Теорема 2 ===
Строка 196: Строка 168:
 
{{Теорема
 
{{Теорема
 
|statement= <tex> A \in \mathcal{L}(E,F),~R(A) = \operatorname{Cl} R(A) \implies  R(A^*) = (\operatorname{Ker}A )^\perp </tex>.
 
|statement= <tex> A \in \mathcal{L}(E,F),~R(A) = \operatorname{Cl} R(A) \implies  R(A^*) = (\operatorname{Ker}A )^\perp </tex>.
|proof =  
+
|proof = {{TODO | t = написать доказательство}}
1) <tex>f \in R(A^*) \implies f = \varphi A , \varphi \in F^*</tex>.
+
<tex>f \in R(A^*) \implies f = \varphi A , \varphi \in F^*</tex>. Рассмотрим <tex> x \in (\operatorname{Ker}A). </tex>  
 
 
Рассмотрим <tex> x \in (\operatorname{Ker}A). </tex>  
 
 
<tex>f(x) = \varphi(Ax) = \varphi(0) = 0 \implies R(A^*) \subset (\operatorname{Ker}A )^\perp</tex>.
 
<tex>f(x) = \varphi(Ax) = \varphi(0) = 0 \implies R(A^*) \subset (\operatorname{Ker}A )^\perp</tex>.
  
2) Докажем теперь обратное включение:
 
 
<tex>(\operatorname{Ker}A )^\perp</tex> — набор таких <tex>f</tex>, что если <tex>Ax=0</tex>, то <tex>f(x)=0</tex>.
 
 
Надо показать, что <tex>f \in R(A^*)</tex>, т.е. проверить, что  <tex>f = A^* \varphi = \varphi A</tex>.
 
 
Если найдем <tex>\varphi</tex>, заданный на <tex>R(A)</tex>, то сможем продолжить его на все <tex>F</tex> по теореме Хана-Банаха.
 
 
Рассмотрим произвольное <tex>y \in R(A)</tex>, пусть <tex>y = Ax</tex> и <tex>y = Ax'</tex>.
 
 
Тогда <tex>A(x - x') = 0</tex>, то есть <tex>x - x' \in \operatorname{Ker} A</tex>, <tex>f(x - x') = 0</tex>, и <tex>f(x) = f(x')</tex>, то есть, значение функционала не зависит от того, какой конкретно <tex>x</tex> (при <tex>Ax = y</tex>) был выбран.
 
 
Тогда можно взять <tex>\varphi(y) = f(x)</tex>, где <tex>y = Ax</tex> — линейный функционал, <tex>f = \varphi A</tex>. Осталось проверить ограниченность <tex>\varphi</tex> на <tex>R(A)</tex>.
 
 
Рассмотрим <tex>E/_{\operatorname{Ker} A}</tex>, <tex>\widetilde{A} : E/_{\operatorname{Ker} A} \to F</tex>, <tex>\widetilde{A}([x]) = Ax</tex>.
 
 
<tex>\widetilde{A} : E/_{\operatorname{Ker} A} \to R(A)</tex> — биекция, <tex>R(A)</tex> — замкнуто, <tex>F</tex> — банахово, поэтому <tex>R(A)</tex> — также банахово как подпространство в <tex>F</tex>. Введем норму для <tex>[x] \in E/_{\operatorname{Ker} A}</tex> как <tex>\|[x]\| = \inf\limits_{x\in [x]} \|x\|</tex>.
 
 
Покажем, что <tex>\widetilde{A}</tex> — ограничен: <tex>\|\widetilde{A}\| = \sup\limits_{\|[x]\| = 1} \|\widetilde{A}[x]\|</tex>. Для этого перейдем от классов эквивалентности к их представителям. Так как <tex>\|[x]\| = \inf\limits_{x \in [x]} \|x\| = 1</tex>, найдется <tex>x \in [x]</tex>, такой, что <tex>\|x\| \le 2</tex> (по определению инфимума), возьмем его в качестве представителя (мы можем это сделать, так как значение <tex>Ax</tex> одно и тоже для любого <tex>x\in[x]</tex>). Тогда: <tex>\|\widetilde{A}\| = \sup\limits_{\|[x]\| = 1} \|\widetilde{A}[x]\| \le \sup\limits_{\|x\| \le 2} \|Ax\| \le \sup\limits_{\|y\| \le 1} \|A(2 y)\| \le 2 \sup\limits_{\|y\| \le 1} \|Ay\| = 2 \|A\|</tex>, так как <tex>\|A\|</tex> был ограничен, <tex>\widetilde{A}</tex> тоже окажется ограниченным.
 
 
Тогда по [[Теорема Банаха об обратном операторе#Теорема Банаха о гомеоморфизме|теореме Банаха об гомеоморфизме]] существует линейный ограниченный оператор <tex>\widetilde{A}^{-1}</tex>, <tex>\| \widetilde{A}^{-1}(y) \| \le m \|y\| < 2m \|y\|</tex>. Замечание: строгое неравенство нам нужно для того, чтобы обеспечить существование такого <tex> x' \in A^{-1}(y) </tex>, что <tex> \| x' \| < 2m\| y \| </tex>.
 
 
<tex>\widetilde{A}^{-1}(y) = \{ x: y = Ax \}</tex>
 
 
<tex>\|\widetilde{A}^{-1}(y)\| = \inf\limits_{x\in \widetilde{A}^{-1}(y)} \|x\| < 2m \|y\| </tex>, следовательно, существует <tex> x' = A^{-1}y, \|x'\| < 2m\|y\|</tex>.
 
 
<tex> \|\varphi(y)\| = \|f(x')\| \le \|f\|\|x'\| < (2m\|f\|)\|y\| </tex>, то есть, получили ограниченность <tex> \varphi </tex>, теорема доказана.
 
 
}}
 
}}
  
Эти две теоремы являются наиболее общей формой записи условий разрешимости операторных уравнений.
+
</wikitex>
 
 
Смысл: рассмотрим уравнение <tex>Ax = y</tex>, где <tex>y</tex> — дано. Для того, чтобы понять, разрешимо ли уравнение, нужно проверить, что <tex>y \in R(A)</tex>. В общем случае, не существует способа это сделать, но можно ограничиться проверкой <tex>R(A) = \operatorname{Cl} R(A)</tex>, и тогда <tex>R(A) = (\operatorname{Ker}A^*)^\bot</tex>, сопряженный оператор можно построить, ядро поддается конструктивному описанию: <tex>y \in R(A) \iff y \perp \operatorname{Ker} A^*</tex>.
 
 
 
Например, <tex>A: \mathbb{R}^m \to \mathbb{R}^n</tex>, <tex>A^* = A^\top : \mathbb{R}^n \to \mathbb{R}^m</tex>. <tex>R(A) = \operatorname{Cl} R(A)</tex>, <tex>Ax = y</tex>, <tex>y</tex> — дано. Надо смотреть <tex>y \perp \operatorname{Ker} A^*</tex>, то есть <tex>A^\top y = 0</tex>.
 
 
 
В следующих параграфах мы введем класс бесконечномерных операторов, для которых <tex>R(A)</tex> — замкнуто, в частности, в этот класс входят интегральные операторы.
 
 
 
[[Категория: Функциональный анализ 3 курс]]
 

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)