Редактирование: Сортировка Хана

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 1: Строка 1:
'''Сортировка Хана''' (англ. ''Hansort'') {{---}} сложный алгоритм сортировки целых чисел со сложностью <tex dpi="130">O(n \log\log n)</tex>, где <tex dpi="130">n</tex> {{---}} количество элементов для сортировки.
+
'''Сортировка Хана (Yijie Han)''' {{---}} сложный алгоритм сортировки целых чисел со сложностью <tex>O(n \log\log n)</tex>, где <tex>n</tex> {{---}} количество элементов для сортировки.
  
Данная статья писалась на основе брошюры Хана (англ. ''Yijie Han''), посвященной этой сортировке.
+
Данная статья писалась на основе брошюры Хана, посвященной этой сортировке. Изложение материала в данной статье идет примерно в том же порядке, в каком она предоставлена в работе Хана.
  
== Описание ==
+
== Алгоритм ==
Алгоритм построен на основе '''экспоненциального поискового дерева Андерсона''' (англ. ''Andersson's exponential search tree''). Сортировка происходит за счет вставки целых чисел в экспоненциальное поисковое дерево (''далее {{---}} ЭП-дерево'').
+
Алгоритм построен на основе экспоненциального поискового дерева (далее {{---}} ЭП-дерево) Андерсона (Andersson's exponential search tree). Сортировка происходит за счет вставки целых чисел в ЭП-дерево.
  
== Экспоненциальное поисковое дерево Андерсона ==
+
== Andersson's exponential search tree ==
 +
ЭП-дерево с <tex>n</tex> листьями состоит из корня <tex>r</tex> и <tex>n^e</tex> (0<<tex>e</tex><1) ЭП-поддеревьев, в каждом из которых <tex>n^{1 - e}</tex> листьев; каждое ЭП-поддерево является сыном корня <tex>r</tex>. В этом дереве <tex>O(n \log\log n)</tex> уровней. При нарушении баланса дерева, необходимо балансирование, которое требует <tex>O(n \log\log n)</tex> времени при <tex>n</tex> вставленных целых числах. Такое время достигается за счет вставки чисел группами, а не по одиночке, как изначально предлагает Андерссон.
  
 +
==Необходимая информация==
 
{{Определение
 
{{Определение
|definition = '''ЭП-дерево''' {{---}} это дерево поиска, в котором все ключи хранятся в листьях этого дерева и количество детей у каждого узла уменьшается экспоненциально от глубины узла.
+
|id=def1.
 +
|definition=
 +
Контейнер {{---}} объект определенного типа, содержащий обрабатываемый элемент. Например __int32, __int64, и т.д.
 
}}
 
}}
 +
{{Определение
 +
|id=def2.
 +
|definition=
 +
Алгоритм сортирующий <tex>n</tex> целых чисел из множества <tex>\{0, 1, \ldots, m - 1\}</tex> называется консервативным, если длина контейнера (число бит в контейнере), является <tex>O(\log(m + n))</tex>. Если длина больше, то алгоритм неконсервативный.
 +
}}
 +
{{Определение
 +
|id=def3.
 +
|definition=
 +
Если мы сортируем целые числа из множества {0, 1, ..., <tex>m</tex> - 1} с длиной контейнера <tex>k \log (m + n)</tex> с <tex>k</tex> <tex>\ge</tex> 1, тогда мы сортируем с неконсервативным преимуществом <tex>k</tex>.
 +
}}
 +
{{Определение
 +
|id=def4.
 +
|definition=
 +
Для множества <tex>S</tex> определим
 +
<tex>\min(S) = \min\limits_{a \in S} a</tex>
  
[[Файл:Exp-tree.png|400px|thumb|right|Общая структура ЭП-дерева]]
+
min(<tex>S</tex>) = min(<tex>a</tex>:<tex>a</tex> принадлежит <tex>S</tex>)
 +
max(<tex>S</tex>) = max(<tex>a</tex>:<tex>a</tex> принадлежит <tex>S</tex>)
 +
Набор <tex>S1</tex> < <tex>S2</tex> если max(<tex>S1</tex>) <tex>\le</tex> min(<tex>S2</tex>)
 +
}}
  
Структура ЭП-дерева:
+
==Уменьшение числа бит в числах==
 +
Один из способов ускорить сортировку {{---}} уменьшить число бит в числе. Один из способов уменьшить число бит в числе {{---}} использовать деление пополам (эту идею впервые подал van Emde Boas). Деление пополам заключается в том, что количество оставшихся бит в числе уменьшается в 2 раза. Это быстрый способ, требующий <tex>O(m)</tex> памяти. Для своего дерева Андерссон использует хеширование, что позволяет сократить количество памяти до <tex>O(n)</tex>. Для того, чтобы еще ускорить алгоритм нам необходимо упаковать несколько чисел в один контейнер, чтобы затем за константное количество шагов произвести хэширование для всех чисел хранимых в контейнере. Для этого используется хэш функция для хэширования <tex>n</tex> чисел в таблицу размера <tex>O(n^2)</tex> за константное время, без коллизий. Для этого используется хэш модифицированная функция авторства: Dierzfelbinger и Raman.
  
1) Корень имеет <tex dpi="130">\Theta (n^e)</tex> сыновей <tex dpi="130">( 0 < e < 1 )</tex>. Все сыновья являются ЭП-деревьями.
+
Алгоритм: Пусть целое число <tex>b \ge 0</tex> и пусть <tex>U = \{0, \ldots, 2^b - 1\}</tex>. Класс <tex>H_{b,s}</tex> хэш функций из <tex>U</tex> в <tex>\{0, \ldots, 2^s - 1\}</tex> определен как <tex>H_{b,s} = \{h_{a} \mid 0 < a < 2^b, a \equiv 1 (\mod 2)\}</tex> и для всех <tex>x</tex> из <tex>U: h_{a}(x) = (ax \mod 2^b) div 2^{b - s}</tex>.
  
2) Каждое поддерево корня имеет <tex dpi="130">\Theta(n^{1-e})</tex> сыновей.
+
Данный алгоритм базируется на следующей лемме:
  
В этом дереве <tex dpi="130">O(n \log\log n)</tex> уровней. При нарушении баланса дерева необходимо балансирование, которое требует <tex dpi="130">O(n \log\log n)</tex> времени при <tex dpi="130">n</tex> вставленных целых числах. Такое время достигается за счет вставки чисел группами, а не поодиночке, как изначально предлагал Андерссон.
+
Номер один.
 
+
{{Лемма
==Определения==
+
|id=lemma1.
{{ Определение | definition =
+
|statement=
'''Контейнер''' {{---}} объект, в которым хранятся наши данные. Например: 32-битные и 64-битные числа, массивы, вектора.}}
+
Даны целые числа <tex>b</tex> <tex>\ge</tex> <tex>s</tex> <tex>\ge</tex> 0 и <tex>T</tex> является подмножеством {0, ..., <tex>2^b</tex> - 1}, содержащим <tex>n</tex> элементов, и <tex>t</tex> <tex>\ge</tex> <tex>2^{-s + 1}</tex>С<tex>^k_{n}</tex>. Функция <tex>h_{a}</tex> принадлежащая <tex>H_{b,s}</tex> может быть выбрана за время <tex>O(bn^2)</tex> так, что количество коллизий <tex>coll(h_{a}, T) <tex>\le</tex> t</tex>
{{ Определение | definition =
 
Алгоритм, сортирующий <tex dpi="130">n</tex> целых чисел из множества <tex dpi="130">\{0, 1, \ldots, m - 1\}</tex>, называется '''консервативным''', если длина контейнера (число бит в контейнере) равна <tex dpi="130">O(\log(m + n))</tex>. Если длина больше, то алгоритм '''неконсервативный'''.
 
}}
 
{{ Определение | definition =
 
Если сортируются целые числа из множества <tex dpi="130">\{0, 1, \ldots, m - 1\}</tex> с длиной контейнера <tex dpi="130">k \log (m + n)</tex> с <tex dpi="130">k \geqslant 1</tex>, тогда сортировка происходит с '''неконсервативным преимуществом''' <tex dpi="130">k</tex>.
 
 
}}
 
}}
{{ Определение | definition =
 
Для множества <tex dpi="130">S</tex> определим
 
 
<tex dpi="130">\min(S) = \min\limits_{a \in S} a</tex>
 
  
<tex dpi="130">\max(S) = \max\limits_{a \in S} a</tex>
+
Взяв <tex>s = 2 \log n</tex> мы получим хэш функцию <tex>h_{a}</tex> которая захэширует <tex>n</tex> чисел из <tex>U</tex> в таблицу размера <tex>O(n^2)</tex> без коллизий. Очевидно, что <tex>h_{a}(x)</tex> может быть посчитана для любого <tex>x</tex> за константное время. Если мы упакуем несколько чисел в один контейнер так, что они разделены несколькими битами нулей, мы спокойно сможем применить <tex>h_{a}</tex> ко всему контейнеру, а в результате все хэш значения для всех чисел в контейере были посчитаны. Заметим, что это возможно только потому, что в вычисление хэш знчения вовлечены только (mod <tex>2^b</tex>) и (div <tex>2^{b - s}</tex>).
  
Набор <tex dpi="130">S1 < S2</tex> если <tex dpi="130">\max(S1) \leqslant \min(S2)</tex>
+
Такая хэш функция может быть найдена за <tex>O(n^3)</tex>.
}}
 
  
{{ Определение | definition =
+
Следует отметить, что несмотря на размер таблицы <tex>O(n^2)</tex>, потребность в памяти не превышает <tex>O(n)</tex> потому, что хэширование используется только для уменьшения количества бит в числе.
Предположим, есть набор <tex dpi="130">T</tex> из <tex dpi="130">p</tex> чисел, которые уже отсортированы как <tex dpi="130">a_{1}, a_{2}, \ldots, a_{p}</tex> и набор <tex dpi="130">S</tex> из <tex dpi="130">q</tex> чисел <tex dpi="130">b_{1}, b_{2}, \ldots, b_{q}</tex>. Тогда '''разделением''' <tex dpi="130">q</tex> чисел <tex dpi="130">p</tex> числами называется <tex dpi="130">p + 1</tex> набор <tex dpi="130">S_{0}, S_{1}, \ldots, S_{p}</tex>, где <tex dpi="130">S_{0} < a_{1} < S_{1} < \ldots < a_{p} < S_{p}</tex>.
 
}}
 
 
 
==Леммы==
 
 
 
{{Лемма
 
|id = lemma1
 
|about = № 1
 
|statement =
 
Даны целые числа <tex dpi="130">b \geqslant s \geqslant 0</tex>, и <tex dpi="130">T</tex> является подмножеством множества <tex dpi="130">\{0, \ldots, 2^b - 1\}</tex>, содержащим <tex dpi="130">n</tex> элементов, и <tex dpi="130">t \geqslant 2^{-s + 1}С^k_{n}</tex>. Функция <tex dpi="130">h_{a}</tex>, принадлежащая <tex dpi="130">H_{b,s}</tex>, может быть выбрана за время <tex dpi="130">O(bn^2)</tex> так, что количество коллизий <tex dpi="130">coll(h_{a}, T) \leqslant t</tex>.
 
}}
 
  
{{Лемма
+
==Signature sorting==
|id = lemma2
+
В данной сортировке используется следующий алгоритм:
|about = № 2
 
|statement =  
 
Выбор <tex dpi="130">s</tex>-ого наибольшего числа среди <tex dpi="130">n</tex> чисел, упакованных в <tex dpi="150">\frac{n}{g}</tex> контейнеров, может быть сделан за время <tex dpi="150">O(\frac{n \log g}{g})</tex> и с использованием <tex dpi="150">O(\frac{n}{g})</tex> памяти. В том числе, так  может быть найдена медиана.
 
  
|proof =
+
Предположим, что <tex>n</tex> чисел должны быть сортированы, и в каждом <tex>\log m</tex> бит. Мы рассматриваем, что в каждом числе есть <tex>h</tex> сегментов, в каждом из которых <tex>\log (m/h)</tex> бит. Теперь мы применяем хэширование ко всем сегментам и получаем <tex>2h \log n</tex> бит хэшированных значений для каждого числа. После сортировки на хэшированных значениях для всех начальных чисел начальная задача по сортировке <tex>n</tex> чисел по <tex>m</tex> бит в каждом стала задачей по сортировке <tex>n</tex> чисел по <tex> \log (m/h)</tex> бит в каждом.
Так как возможно делать попарное сравнение <tex dpi="130">g</tex> чисел в одном контейнере с <tex dpi="130">g</tex> числами в другом и извлекать большие числа из одного контейнера и меньшие из другого за константное время, возможно упаковать медианы из первого, второго, <tex dpi="130">\ldots</tex>, <tex dpi="130">g</tex>-ого чисел из 5 контейнеров в один контейнер за константное время. Таким образом, набор <tex dpi="130">S</tex> из медиан теперь содержится в <tex dpi="150">\frac{n}{5g}</tex> контейнерах. Рекурсивно находим медиану <tex dpi="130">m</tex> в <tex dpi="130">S</tex>. Используя <tex dpi="130">m</tex>, уберем хотя бы <tex dpi="150">\frac{n}{4}</tex> чисел среди <tex dpi="130">n</tex>. Затем упакуем оставшиеся из <tex dpi="150">\frac{n}{g}</tex> контейнеров в <tex dpi="150">\frac{3n}{4g}</tex> контейнеров и затем продолжим рекурсию.
 
}}
 
  
{{Лемма
+
Так же, рассмотрим проблему последующего разделения. Пусть <tex>a_{1}</tex>, <tex>a_{2}</tex>, ..., <tex>a_{p}</tex> {{---}} <tex>p</tex> чисел и <tex>S</tex> {{---}} множество чисeл. Мы хотим разделить <tex>S</tex> в <tex>p + 1</tex> наборов таких, что: <tex>S_{0}</tex> < {<tex>a_{1}</tex>} < <tex>S_{1}</tex> < {<tex>a_{2}</tex>} < ... < {<tex>a_{p}</tex>} < <tex>S_{p}</tex>. Т.к. мы используем signature sorting, до того как делать вышеописанное разделение, мы поделим биты в <tex>a_{i}</tex> на <tex>h</tex> сегментов и возьмем некоторые из них. Мы так же поделим биты для каждого числа из <tex>S</tex> и оставим только один в каждом числе. По существу для каждого <tex>a_{i}</tex> мы возьмем все <tex>h</tex> сегментов. Если соответствующие сегменты <tex>a_{i}</tex> и <tex>a_{j}</tex> совпадают, то нам понадобится только один. Сегменты, которые мы берем для числа в <tex>S</tex>, {{---}} сегмент, который выделяется из <tex>a_{i}</tex>. Таким образом мы преобразуем начальную задачу о разделении <tex>n</tex> чисел в <tex>\log m</tex> бит в несколько задач на разделение с числами в <tex>\log (m/h)</tex> бит.
|id = lemma3
 
|about = № 3
 
|statement =
 
Если <tex dpi="130">g</tex> целых чисел, в сумме использующих <tex dpi="150">\frac{\log n}{2}</tex> бит, упакованы в один контейнер, тогда <tex dpi="130">n</tex> чисел в <tex dpi="150">\frac{n}{g}</tex> контейнерах могут быть отсортированы за время <tex dpi="150">O(\frac{n \log g}{g})</tex> с использованием <tex dpi="150">O(\frac{n}{g})</tex> памяти.
 
  
 +
Пример:
  
|proof =
+
<tex>a_{1}</tex> = 3, <tex>a_{2}</tex> = 5, <tex>a_{3}</tex> = 7, <tex>a_{4}</tex> = 10, S = {1, 4, 6, 8, 9, 13, 14}.
Так как используется только <tex dpi="150">\frac{\log n}{2}</tex> бит в каждом контейнере для хранения <tex dpi="130">g</tex> чисел, используем bucket sort, чтобы отсортировать все контейнеры, представляя каждый как число, что занимает <tex dpi="150">O(\frac{n}{g})</tex> времени и памяти. Так как используется <tex dpi="150">\frac{\log n}{2}</tex> бит на контейнер, понадобится <tex dpi="130">\sqrt{n}</tex> шаблонов для всех контейнеров. Затем поместим <tex dpi="150">g < \frac{\log n}{2}</tex> контейнеров с одинаковым шаблоном в одну группу. Для каждого шаблона останется не более <tex dpi="130">g - 1</tex> контейнеров, которые не смогут образовать группу. Поэтому не более <tex dpi="130">\sqrt{n}(g - 1)</tex> контейнеров не смогут сформировать группу. Для каждой группы помещаем <tex dpi="130">i</tex>-е число во всех <tex dpi="130">g</tex> контейнерах в один. Таким образом берутся <tex dpi="130">g</tex> <tex dpi="130">g</tex>-целых векторов и получаются <tex dpi="130">g</tex> <tex dpi="130">g</tex>-целых векторов, где <tex dpi="130">i</tex>-ый вектор содержит <tex dpi="130">i</tex>-ое число из входящего вектора. Эта транспозиция может быть сделана за время <tex dpi="130">O(g \log g)</tex>, с использованием <tex dpi="130">O(g)</tex> памяти. Для всех групп это занимает время <tex dpi="150">O(\frac{n \log g}{g})</tex>, с использованием <tex dpi="150">O(\frac{n}{g})</tex> памяти.
 
  
Для контейнеров вне групп (которых <tex dpi="130">\sqrt{n}(g - 1)</tex> штук) разбираем и собираем заново контейнеры. На это потребуется не более <tex dpi="150">O(\frac{n}{g})</tex> времени и памяти. После всего этого используем карманную сортировку вновь для сортировки <tex dpi="130">n</tex> контейнеров. Таким образом, все числа отсортированы.
+
Мы разделим числа на 2 сегмента. Для <tex>a_{1}</tex> получим верхний сегмент 0, нижний 3; <tex>a_{2}</tex> верхний 1, нижний 1; <tex>a_{3}</tex> верхний 1, нижний 3; <tex>a_{4}</tex> верхний 2, нижний 2. Для элементов из S получим: для 1: нижний 1 т.к. он выделяется из нижнего сегмента <tex>a_{1}</tex>; для 4 нижний 0; для 8 нижний 0; для 9 нижний 1; для 13 верхний 3; для 14 верхний 3. Теперь все верхние сегменты, нижние сегменты 1 и 3, нижние сегменты 4, 5, 6, 7, нижние сегменты  8, 9, 10 формируют 4 новые задачи на разделение.
  
 +
==Сортировка на маленьких целых==
 +
Для лучшего понимания действия алгоритма и материала, изложенного в данной статье, в целом, ниже представлены несколько полезных лемм.
  
Заметим, что когда <tex dpi="130">g = O( \log n)</tex>, сортировка <tex dpi="130">O(n)</tex> чисел в <tex dpi="150">\frac{n}{g}</tex> контейнеров произойдет за время <tex dpi="150">O((\frac{n}{g})</tex> <tex dpi="130">\log\log n)</tex> с использованием <tex dpi="150">O(\frac{n}{g})</tex> памяти. Выгода очевидна.
+
Номер два.
 +
{{Лемма
 +
|id=lemma2.
 +
|statement=
 +
<tex>n</tex> целых чисел можно отсортировать в <tex>\sqrt{n}</tex> наборов <tex>S_{1}</tex>, <tex>S_{2}</tex>, ..., <tex>S_{\sqrt{n}}</tex> таким образом, что в каждом наборе <tex>\sqrt{n}</tex> чисел и <tex>S_{i}</tex> < <tex>S_{j}</tex> при <tex>i</tex> < <tex>j</tex>, за время <tex>O(n \log\log n/ \log k)</tex> и место <tex>O(n)</tex> с не консервативным преимуществом <tex>k \log\log n</tex>
 +
|proof=
 +
Доказательство данной леммы будет приведено далее в тексте статьи.
 
}}
 
}}
  
 +
Номер три.
 
{{Лемма
 
{{Лемма
|id = lemma4
+
|id=lemma3.
|about = № 4
+
|statement=
|statement =  
+
Выбор <tex>s</tex>-ого наибольшего числа среди <tex>n</tex> чисел упакованных в <tex>n/g</tex> контейнеров может быть сделана за <tex>O(n \log g/g)</tex> время и с использованием <tex>O(n/g)</tex> места. Конкретно медиана может быть так найдена.
Примем, что каждый контейнер содержит <tex dpi="130"> \log m > \log n</tex> бит, и <tex dpi="130">g</tex> чисел, в каждом из которых <tex dpi="150">\frac{\log m}{g}</tex> бит, упакованы в один контейнер. Если каждое число имеет маркер, содержащий <tex dpi="150">\frac{\log n}{2g}</tex> бит, и <tex dpi="130">g</tex> маркеров упакованы в один контейнер таким же образом<tex dpi="130">^*</tex>, что и числа, тогда <tex dpi="130">n</tex> чисел в <tex dpi="150">\frac{n}{g}</tex> контейнерах могут быть отсортированы по их маркерам за время <tex dpi="150">O(\frac{n \log\log n}{g})</tex> с использованием <tex dpi="150">O(\frac{n}{g})</tex> памяти.
+
|proof=
(*): если число <tex dpi="130">a</tex> упаковано как <tex dpi="130">s</tex>-ое число в <tex dpi="130">t</tex>-ом контейнере для чисел, тогда маркер для <tex dpi="130">a</tex> упакован как <tex dpi="130">s</tex>-ый маркер в <tex dpi="130">t</tex>-ом контейнере для маркеров.
+
Так как мы можем делать попарное сравнение <tex>g</tex> чисел в одном контейнере с <tex>g</tex> числами в другом и извлекать большие числа из одного контейнера и меньшие из другого за константное время, мы можем упаковать медианы из первого, второго, ..., <tex>g</tex>-ого чисел из 5 контейнеров в один контейнер за константное время. Таким образом набор <tex>S</tex> из медиан теперь содержится в <tex>n/(5g)</tex> контейнерах. Рекурсивно находим медиану <tex>m</tex> в <tex>S</tex>. Используя <tex>m</tex> уберем хотя бы <tex>n/4</tex> чисел среди <tex>n</tex>. Затем упакуем оставшиеся из <tex>n/g</tex> контейнеров в <tex>3n/4g</tex> контейнеров и затем продолжим рекурсию.
 
 
 
 
|proof =
 
Контейнеры для маркеров могут быть отсортированы с помощью bucket sort потому, что каждый контейнер использует <tex dpi="150">\frac{\log n}{2}</tex> бит. Сортировка сгруппирует контейнеры для чисел как в [[#lemma3|лемме №3]]. Перемещаем каждую группу контейнеров для чисел.
 
 
}}
 
}}
  
 +
Номер четыре.
 
{{Лемма
 
{{Лемма
|id = lemma5
+
|id=lemma4.
|about = № 5
+
|statement=
|statement =
+
Если <tex>g</tex> целых чисел, в сумме использующие <tex>(\log n)/2</tex> бит, упакованы в один контейнер, тогда <tex>n</tex> чисел в <tex>n/g</tex> контейнерах могут быть отсортированы за время <tex>O((n/g) \log g)</tex>, с использованием <tex>O(n/g)</tex> места.
Предположим, что каждый контейнер содержит <tex dpi="130">\log m \log\log n > \log n</tex> бит, что <tex dpi="130">g</tex> чисел, в каждом из которых <tex dpi="150">\frac{\log m}{g}</tex> бит, упакованы в один контейнер, что каждое число имеет маркер, содержащий <tex dpi="150">\frac{\log n}{2g}</tex> бит, и что <tex dpi="130">g</tex> маркеров упакованы в один контейнер тем же образом что и числа. Тогда <tex dpi="130">n</tex> чисел в <tex dpi="150">\frac{n}{g}</tex> контейнерах могут быть отсортированы по своим маркерам за время <tex dpi="150">O(\frac{n}{g})</tex> с использованием <tex dpi="150">O(\frac{n}{g})</tex> памяти.
+
|proof=
 +
Так как используется только <tex>(\log n)/2</tex> бит в каждом контейнере для хранения <tex>g</tex> чисел, мы можем использовать bucket sorting чтобы отсортировать все контейнеры. представляя каждый как число, что занимает <tex>O(n/g)</tex> времени и места. Потому, что мы используем <tex>(\log n)/2</tex> бит на контейнер нам понадобится <tex>\sqrt{n}</tex> шаблонов для всех контейнеров. Затем поместим <tex>g < (\log n)/2</tex> контейнеров с одинаковым шаблоном в одну группу. Для каждого шаблона останется не более <tex>g - 1</tex> контейнеров которые не смогут образовать группу. Поэтому не более <tex>\sqrt{n}(g - 1)</tex> контейнеров не смогут сформировать группу. Для каждой группы мы помещаем <tex>i</tex>-е число во всех <tex>g</tex> контейнерах в один. Таким образом мы берем <tex>g</tex> <tex>g</tex>-целых векторов и получаем <tex>g</tex> <tex>g</tex>-целых векторов где <tex>i</tex>-ый вектор содержит <tex>i</tex>-ое число из входящего вектора. Эта транспозиция может быть сделана за время <tex>O(g \log g)</tex>, с использованием <tex>O(g)</tex> места. Для всех групп это занимает время <tex>O((n/g) \log g)</tex>, с использованием <tex>O(n/g)</tex> места.
  
|proof =
+
Для контейнеров вне групп (которых <tex>\sqrt{n}(g - 1)</tex> штук) мы просто разберем и соберем заново контейнеры. На это потребуется не более <tex>O(n/g)</tex> места и времени. После всего этого мы используем bucket sorting вновь для сортировки <tex>n</tex> контейнеров. таким образом мы отсортируем все числа.
Заметим, что несмотря на то, что длина контейнера <tex dpi="130">\log m \log\log n</tex> бит, всего <tex dpi="130">\log m</tex> бит используется для хранения упакованных чисел. Так же как в [[#lemma3|лемме №3]] и [[#lemma4|лемме №4]] сортируем контейнеры упакованных маркеров с помощью bucket sort. Для того, чтобы перемещать контейнеры чисел, помещаем <tex dpi="130">g \log\log n</tex> вместо <tex dpi="130">g</tex> контейнеров чисел в одну группу. Для транспозиции чисел в группе, содержащей <tex dpi="130">g \log\log n</tex> контейнеров, упаковываем <tex dpi="130">g \log\log n</tex> контейнеров в <tex dpi="130">g</tex>, упаковывая <tex dpi="130">\log\log n</tex> контейнеров в один. Далее делаем транспозицию над <tex dpi="130">g</tex> контейнерами. Таким образом перемещение занимает всего <tex dpi="130">O(g \log\log n)</tex> времени для каждой группы и <tex dpi="150">O(\frac{n}{g})</tex> времени для всех чисел. После завершения транспозиции, распаковываем <tex dpi="130">g</tex> контейнеров в <tex dpi="130">g \log\log n</tex> контейнеров.
+
}}
  
 +
Заметим, что когда <tex>g = O( \log n)</tex> мы сортируем <tex>O(n)</tex> чисел в <tex>n/g</tex> контейнеров за время <tex>O((n/g) \log\log n)</tex>, с использованием O(n/g) места. Выгода очевидна.
  
Заметим, что если длина контейнера <tex dpi="130">\log m \log\log n</tex> и только <tex dpi="130">\log m</tex> бит используется для упаковки <tex dpi="130">g \leqslant \log n</tex> чисел в один контейнер, тогда выбор в [[#lemma2|лемме №2]] может быть сделан за время и память <tex dpi="150">O(\frac{n}{g})</tex>, потому что упаковка в доказательстве [[#lemma2|лемме №2]] теперь может быть сделана за время <tex dpi="150">O(\frac{n}{g})</tex>.
+
Лемма пять.
 +
{{Лемма
 +
|id=lemma5.
 +
|statement=
 +
Если принять, что каждый контейнер содержит <tex> \log m > \log n</tex> бит, и <tex>g</tex> чисел, в каждом из которых <tex>(\log m)/g</tex> бит, упакованы в один контейнер. Если каждое число имеет маркер, содержащий <tex>(\log n)/(2g)</tex> бит, и <tex>g</tex> маркеров упакованы в один контейнер таким же образом<tex>^*</tex>, что и числа, тогда <tex>n</tex> чисел в <tex>n/g</tex> контейнерах могут быть отсортированы по их маркерам за время <tex>O((n \log\log n)/g)</tex> с использованием <tex>O(n/g)</tex> места.
 +
(*): если число <tex>a</tex> упаковано как <tex>s</tex>-ое число в <tex>t</tex>-ом контейнере для чисел, тогда маркер для <tex>a</tex> упакован как <tex>s</tex>-ый маркер в <tex>t</tex>-ом контейнере для маркеров.
 +
|proof=
 +
Контейнеры для маркеров могут быть отсортированы с помощью bucket sort потому, что каждый контейнер использует <tex>( \log n)/2</tex> бит. Сортировка сгруппирует контейнеры для чисел как в четвертой лемме. Мы можем переместить каждую группу контейнеров для чисел.
 
}}
 
}}
 +
Заметим, что сортирующие алгоритмы в четвертой и пятой леммах нестабильные. Хотя на их основе можно построить стабильные алгоритмы используя известный метод добавления адресных битов к каждому входящему числу.
  
 +
Если у нас длина контейнеров больше, сортировка может быть ускорена, как показано в следующей лемме.
  
 +
Лемма шесть.
 
{{Лемма
 
{{Лемма
|id = lemma6
+
|id=lemma6.
|about = № 6
+
|statement=
|statement =  
+
предположим, что каждый контейнер содержит <tex>\log m \log\log n > \log n</tex> бит, что <tex>g</tex> чисел, в каждом из которых <tex>(\log m)/g</tex> бит, упакованы в один контейнер, что каждое число имеет маркер, содержащий <tex>(\log n)/(2g)</tex> бит, и что <tex>g</tex> маркеров упакованы в один контейнер тем же образом что и числа, тогда <tex>n</tex> чисел в <tex>n/g</tex> контейнерах могут быть отсортированы по своим маркерам за время <tex>O(n/g)</tex>, с использованием <tex>O(n/g)</tex> памяти.
<tex dpi="130">n</tex> целых чисел можно отсортировать в <tex dpi="130">\sqrt{n}</tex> наборов <tex dpi="130">S_{1}</tex>, <tex dpi="130">S_{2}</tex>, <tex dpi="130">\ldots</tex>, <tex dpi="130">S_{\sqrt{n}}</tex> таким образом, что в каждом наборе <tex dpi="130">\sqrt{n}</tex> чисел и <tex dpi="130">S_{i} < S_{j}</tex> при <tex dpi="130">i < j</tex>, за время <tex dpi="150">O(\frac{n \log\log n} {\log k})</tex> и место <tex dpi="130">O(n)</tex> с неконсервативным преимуществом <tex dpi="130">k \log\log n</tex>.
+
|proof=
 +
Заметим, что несмотря на то, что длина контейнера <tex>\log m \log\log n</tex> бит всего <tex>\log m</tex> бит используется для хранения упакованных чисел. Так же как в леммах четыре и пять мы сортируем контейнеры упакованных маркеров с помощью bucket sort. Для того, чтобы перемещать контейнеры чисел мы помещаем <tex>g \log\log n</tex> вместо <tex>g</tex> контейнеров чисел в одну группу. Для транспозиции чисел в группе содержащей <tex>g \log\log n</tex> контейнеров мы сначала упаковываем <tex>g \log\log n</tex> контейнеров в <tex>g</tex> контейнеров упаковывая <tex>\log\log n</tex> контейнеров в один. Далее мы делаем транспозицию над <tex>g</tex> контейнерами. Таким образом перемещение занимает всего <tex>O(g \log\log n)</tex> времени для каждой группы и <tex>O(n/g)</tex> времени для всех чисел. После завершения транспозиции, мы далее распаковываем <tex>g</tex> контейнеров в <tex>g \log\log n</tex> контейнеров.
 +
}}
  
 +
Заметим, что если длина контейнера <tex>\log m \log\log n</tex> и только <tex>\log m</tex> бит используется для упаковки <tex>g \le \log n</tex> чисел в один контейнер, тогда выбор в лемме три может быть сделан за время и место <tex>O(n/g)</tex>, потому, что упаковка в доказатльстве леммы три теперь может быть сделана за время <tex>O(n/g)</tex>.
  
|proof =  
+
==Сортировка n целых чисел в sqrt(n) наборов==
Алгоритм сортировки <tex dpi="130">n</tex> целых чисел в <tex dpi="130">\sqrt{n}</tex> наборов, представленный ниже, является доказательством данной леммы.
+
Постановка задачи и решение некоторых проблем:
  
Постановка задачи и решение некоторых проблем:
+
Рассмотрим проблему сортировки <tex>n</tex> целых чисел из множества {0, 1, ..., <tex>m</tex> - 1} в <tex>\sqrt{n}</tex> наборов как во второй лемме. Мы предполагаем, что в каждом контейнере <tex>k \log\log n \log m</tex> бит и хранит число в <tex>\log m</tex> бит. Поэтому неконсервативное преимущество <tex>k \log \log n</tex>. Мы так же предполагаем, что <tex>\log m \ge \log n \log\log n</tex>. Иначе мы можем использовать radix sort для сортировки за время <tex>O(n \log\log n)</tex> и линейную память. Мы делим <tex>\log m</tex> бит, используемых для представления каждого числа, в <tex>\log n</tex> блоков. Таким образом каждый блок содержит как минимум <tex>\log\log n</tex> бит. <tex>i</tex>-ый блок содержит с <tex>i \log m/ \log n</tex>-ого по <tex>((i + 1) \log m/ \log n - 1)</tex>-ый биты. Биты считаются с наименьшего бита начиная с нуля. Теперь у нас имеется <tex>2 \log n</tex>-уровневый алгоритм, который работает следующим образом:
  
 +
На каждой стадии мы работаем с одним блоком бит. Назовем эти блоки маленькими числами (далее м.ч.) потому, что каждое м.ч. теперь содержит только <tex>\log m/ \log n</tex> бит. Каждое число представлено и соотносится с м.ч., над которым мы работаем в данный момент. Положим, что нулевая стадия работает с самыми большим блоком (блок номер <tex>\log n - 1</tex>). Предполагаем, что биты этих м.ч. упакованы в <tex>n/ \log n</tex> контейнеров с <tex>\log n</tex> м.ч. упакованных в один контейнер. Мы пренебрегаем временем, потраченным на на эту упаковку, считая что она бесплатна. По третьей лемме мы можем найти медиану этих <tex>n</tex> м.ч. за время и память <tex>O(n/ \log n)</tex>. Пусть <tex>a</tex> это найденная медиана. Тогда <tex>n</tex> м.ч. могут быть разделены на не более чем три группы: <tex>S_{1}</tex>, <tex>S_{2}</tex> и <tex>S_{3}</tex>. <tex>S_{1}</tex> содержит м.ч. которые меньше <tex>a</tex>, <tex>S_{2}</tex> содержит м.ч. равные <tex>a</tex>, <tex>S_{3}</tex> содержит м.ч. большие <tex>a</tex>. Так же мощность <tex>S_{1}</tex> и <tex>S_{3} </tex>\le <tex>n/2</tex>. Мощность <tex>S_{2}</tex> может быть любой. Пусть <tex>S'_{2}</tex> это набор чисел, у которых наибольший блок находится в <tex>S_{2}</tex>. Тогда мы можем убрать убрать <tex>\log m/ \log n</tex> бит (наибольший блок) из каждого числа из <tex>S'_{2}</tex> из дальнейшего рассмотрения. Таким образом после первой стадии каждое число находится в наборе размера не большего половины размера начального набора или один из блоков в числе убран из дальнейшего рассмотрения. Так как в каждом числе только <tex>\log n</tex> блоков, для каждого числа потребуется не более <tex>\log n</tex> стадий чтобы поместить его в набор половинного размера. За <tex>2 \log n</tex> стадий все числа будут отсортированы. Так как на каждой стадии мы работаем с <tex>n/ \log n</tex> контейнерами, то игнорируя время, необходимое на упаковку м.ч. в контейнеры и помещение м.ч. в нужный набор, мы затратим <tex>O(n)</tex> времени из-за <tex>2 \log n</tex> стадий.
  
Рассмотрим проблему сортировки <tex dpi="130">n</tex> целых чисел из множества <tex dpi="130">\{0, 1, \ldots, m - 1\}</tex> в <tex dpi="130">\sqrt{n}</tex> наборов, как в условии леммы. Предполагаем, что каждый контейнер содержит <tex dpi="130">k \log\log n \log m</tex> бит и хранит число в <tex dpi="130">\log m</tex> бит. Поэтому неконсервативное преимущество {{---}} <tex dpi="130">k \log \log n</tex>. Также предполагаем, что <tex dpi="130">\log m \geqslant \log n \log\log n</tex>. Иначе можно использовать radix sort для сортировки за время <tex dpi="130">O(n \log\log n)</tex> и линейную память. Делим <tex dpi="130">\log m</tex> бит, используемых для представления каждого числа, в <tex dpi="130">\log n</tex> блоков. Таким образом, каждый блок содержит как минимум <tex dpi="130">\log\log n</tex> бит. <tex dpi="130">i</tex>-ый блок содержит с
+
Сложная часть алгоритма заключается в том, как поместить маленькие числа в набор, которому принадлежит соответствующее число, после предыдущих операций деления набора в нашем алгоритме. Предположим, что <tex>n</tex> чисел уже поделены в <tex>e</tex> наборов. Мы можем использовать <tex>\log e</tex> битов чтобы сделать марки для каждого набора. Теперь хотелось бы использовать лемму шесть. Полный размер маркера для каждого контейнера должен быть <tex>\log n/2</tex>, и маркер использует <tex>\log e</tex> бит, количество маркеров <tex>g</tex> в каждом контейнере должно быть не более <tex>\log n/(2\log e)</tex>. В дальнейшем т.к. <tex>g = \log n/(2 \log e)</tex> м.ч. должны влезать в контейнер. Каждый контейнер содержит <tex>k \log\log n \log n</tex> блоков, каждое м.ч. может содержать <tex>O(k \log n/g) = O(k \log e)</tex> блоков. Заметим, что мы используем неконсервативное преимущество в <tex>\log\log n</tex> для использования леммы шесть. Поэтому мы предполагаем что <tex>\log n/(2 \log e)</tex> м.ч. в каждом из которых <tex>k \log e</tex> блоков битов числа упакованный в один контейнер. Для каждого м.ч. мы используем маркер из <tex>\log e</tex> бит, который показывает к какому набору он принадлежит. Предполагаем, что маркеры так же упакованы в контейнеры как и м.ч. Так как каждый контейнер для маркеров содержит <tex>\log n/(2 \log e)</tex> маркеров, то для каждого контейнера требуется <tex>(\log n)/2</tex> бит. Таким образом лемма шесть может быть применена для помещения м.ч. в наборы, которым они принадлежат. Так как используется <tex>O((n \log e)/ \log n)</tex> контейнеров то время необходимое для помещения м.ч. в их наборы потребуется <tex>O((n \log e)/ \log n)</tex> времени.
<tex dpi="150">\frac{i \log m} {\log n}</tex>-ого по <tex dpi="150">(\frac{(i + 1) \log m} {\log n - 1})</tex>-ый биты. Биты считаются с наименьшего бита, начиная с нуля. Теперь у нас имеется <tex dpi="130">2 \log n</tex>-уровневый алгоритм, который работает следующим образом:
 
  
 +
Стоит отметить, что процесс помещения нестабилен, т.к. основан на алгоритме из леммы шесть.
  
На каждой стадии работаем с одним блоком бит. Назовем эти блоки маленькими числами (далее м.ч.), потому что каждое м.ч. теперь содержит только <tex dpi="150">\frac{\log m}{\log n}</tex> бит. Каждое число представлено и соотносится с м.ч., над которым работаем в данный момент. Положим, что нулевая стадия работает с самым большим блоком (блок номер <tex dpi="130">\log n - 1</tex>). Предполагаем, что биты этих м.ч. упакованы в <tex dpi="150">\frac{n}{\log n}</tex> контейнеров с <tex dpi="130">\log n</tex> м.ч. упакованными в один контейнер. Пренебрегая временем, потраченным на эту упаковку, считаем, что она бесплатна. По [[#lemma2|лемме №2]] находим медиану этих <tex dpi="130">n</tex> м.ч. за время и память <tex dpi="150">O(\frac{n}{\log n})</tex>. Пусть <tex dpi="130">a</tex> {{---}} это найденная медиана. Тогда <tex dpi="130">n</tex> м.ч. могут быть разделены на не более чем три группы: <tex dpi="130">S_{1}</tex>, <tex dpi="130">S_{2}</tex> и <tex dpi="130">S_{3}</tex>. <tex dpi="130">S_{1}</tex> содержит м.ч., которые меньше <tex dpi="130">a</tex>, <tex dpi="130">S_{2}</tex> содержит м.ч., равные <tex dpi="130">a</tex>, <tex dpi="130">S_{3}</tex> содержит м.ч., большие <tex dpi="130">a</tex>. Также мощность <tex dpi="130">S_{1}</tex> и <tex dpi="130">S_{3} </tex> не превосходит <tex dpi="130">n/2</tex>. Мощность <tex dpi="130">S_{2}</tex> может быть любой. Пусть <tex dpi="130">S'_{2}</tex> {{---}} это набор чисел, у которых наибольший блок находится в <tex dpi="130">S_{2}</tex>. Тогда убираем из дальнейшего рассмотрения <tex dpi="150">\frac{\log m}{\log n}</tex> бит (наибольший блок) из каждого числа, принадлежащего <tex dpi="130">S'_{2}</tex>. Таким образом, после первой стадии каждое число находится в наборе размера не большего половины размера начального набора или один из блоков в числе убран из дальнейшего рассмотрения. Так как в каждом числе только <tex dpi="130">\log n</tex> блоков, для каждого числа потребуется не более <tex dpi="130">\log n</tex> стадий, чтобы поместить его в набор половинного размера. За <tex dpi="130">2 \log n</tex> стадий все числа будут отсортированы. Так как на каждой стадии работаем с <tex dpi="150">\frac{n}{\log n}</tex> контейнерами, то игнорируя время, необходимое на упаковку м.ч. в контейнеры и помещение м.ч. в нужный набор, затрачивается <tex dpi="130">O(n)</tex> времени из-за <tex dpi="130">2 \log n</tex> стадий.
+
При таком помещении мы сразу сталкиваемся со следующей проблемой.
  
 +
Рассмотрим число <tex>a</tex>, которое является <tex>i</tex>-ым в наборе <tex>S</tex>. Рассмотрим блок <tex>a</tex> (назовем его <tex>a'</tex>), который является <tex>i</tex>-ым м.ч. в <tex>S</tex>. Когда мы используем вышеописанный метод перемещения нескольких следующих блоков <tex>a</tex> (назовем это <tex>a''</tex>) в <tex>S</tex>, <tex>a''</tex> просто перемещен на позицию в наборе <tex>S</tex>, но не обязательно на позицию <tex>i</tex> (где расположен <tex>a'</tex>). Если значение блока <tex>a'</tex> одинаково для всех чисел в <tex>S</tex>, то это не создаст проблемы потому, что блок одинаков вне зависимости от того в какое место в <tex>S</tex> помещен <tex>a''</tex>. Иначе у нас возникает проблема дальнейшей сортировки. Поэтому мы поступаем следующим образом: На каждой стадии числа в одном наборе работают на общем блоке, который назовем "текущий блок набора". Блоки, которые предшествуют текущему блоку содержат важные биты и идентичны для всех чисел в наборе. Когда мы помещаем больше бит в набор мы помещаем последующие блоки вместе с текущим блоком в набор. Так вот, в вышеописанном процессе помещения мы предполагаем, что самый значимый блок среди <tex>k \log e</tex> блоков это текущий блок. Таким образом после того как мы поместили эти <tex>k \log e</tex> блоков в набор мы удаляем изначальный текущий блок, потому что мы знаем, что эти <tex>k \log e</tex> блоков перемещены в правильный набор и нам не важно где находился начальный текущий блок. Тот текущий блок находится в перемещенных <tex>k \log e</tex> блоках.
  
Сложная часть алгоритма заключается в том, как поместить м.ч. в набор, которому принадлежит соответствующее число, после предыдущих операций деления набора в нашем алгоритме. Предположим, что <tex dpi="130">n</tex> чисел уже поделены в <tex dpi="130">e</tex> наборов. Используем <tex dpi="130">\log e</tex> битов чтобы сделать марки для каждого набора. Теперь используем [[#lemma5|лемме №5]]. Полный размер маркера для каждого контейнера должен быть <tex dpi="150">\frac{\log n}{2}</tex>, и маркер использует <tex dpi="130">\log e</tex> бит, значит количество маркеров <tex dpi="130">g</tex> в каждом контейнере должно быть не более <tex dpi="150">\frac{\log n}{2\log e}</tex>. В дальнейшем, так как <tex dpi="150">g = \frac{\log n}{2 \log e}</tex>, м.ч. должны влезать в контейнер. Каждый контейнер содержит <tex dpi="130">k \log\log n \log n</tex> блоков, каждое м.ч. может содержать <tex dpi="150">O(\frac{k \log n}{g}) = O(k \log e)</tex> блоков. Заметим, что используется неконсервативное преимущество в <tex dpi="130">\log\log n</tex> для [[#lemma5|лемме №5]] Поэтому предполагается, что <tex dpi="150">\frac{\log n}{2 \log e}</tex> м.ч., в каждом из которых <tex dpi="130">k \log e</tex> блоков битов числа, упакованны в один контейнер. Для каждого м.ч. используется маркер из <tex dpi="130">\log e</tex> бит, который показывает, к какому набору он принадлежит. Предполагаем, что маркеры так же упакованы в контейнеры, как и м.ч. Так как каждый контейнер для маркеров содержит <tex dpi="150">\frac{\log n}{2 \log e}</tex> маркеров, то для каждого контейнера требуется <tex dpi="150">\frac{\log n}{2}</tex> бит. Таким образом, [[#lemma5|лемма №5]] может быть применена для помещения м.ч. в наборы, которым они принадлежат. Так как используется <tex dpi="150">O(\frac{n \log e}{ \log n})</tex> контейнеров, то время, необходимое для помещения м.ч. в их наборы, равно <tex dpi="150">O(\frac{n \log e}{ \log n})</tex>.
+
Стоит отметить, что после нескольких уровней деления размер наборов станет маленьким. Леммы четыре, пять и шесть расчитанны на не очень маленькие наборы. Но поскольку мы сортируем набор из <tex>n</tex> элементов в наборы размера <tex>\sqrt{n}</tex>, то проблем не должно быть.
  
Стоит отметить, что процесс помещения нестабилен, т.к. основан на алгоритме из [[#lemma5|леммы №5]].
+
Собственно алгоритм:
  
 +
Algorithm Sort(<tex>k \log\log n</tex>, <tex>level</tex>, <tex>a_{0}</tex>, <tex>a_{1}</tex>, ..., <tex>a_{t}</tex>)
  
При таком помещении сразу возникает следующая проблема.
+
<tex>k \log\log n</tex> это неконсервативное преимущество, <tex>a_{i}</tex>-ые это входящие целые числа в наборе, которые надо отсортировать, <tex>level</tex> это уровень рекурсии.
  
Рассмотрим число <tex dpi="130">a</tex>, которое является <tex dpi="130">i</tex>-ым в наборе <tex dpi="130">S</tex>. Рассмотрим блок <tex dpi="130">a</tex> (назовем его <tex dpi="130">a'</tex>), который является <tex dpi="130">i</tex>-ым м.ч. в <tex dpi="130">S</tex>. Когда используется вышеописанный метод перемещения нескольких следующих блоков <tex dpi="130">a</tex> (назовем это <tex dpi="130">a''</tex>) в <tex dpi="130">S</tex>, <tex dpi="130">a''</tex> просто перемещен на позицию в наборе <tex dpi="130">S</tex>, но не обязательно на позицию <tex dpi="130">i</tex> (где расположен <tex dpi="130">a'</tex>). Если значение блока <tex dpi="130">a'</tex> одинаково для всех чисел в <tex dpi="130">S</tex>, то это не создаст проблемы потому, что блок одинаков вне зависимости от того в какое место в <tex dpi="130">S</tex> помещен <tex dpi="130">a''</tex>. Иначе у нас возникает проблема дальнейшей сортировки. Поэтому поступаем следующим образом: На каждой стадии числа в одном наборе работают на общем блоке, который назовем "текущий блок набора". Блоки, которые предшествуют текущему блоку содержат важные биты и идентичны для всех чисел в наборе. Когда помещаем больше бит в набор, последующие блоки помещаются в набор вместе с текущим блоком. Так вот, в вышеописанном процессе помещения предполагается, что самый значимый блок среди <tex dpi="130">k \log e</tex> блоков {{---}} это текущий блок. Таким образом, после того, как эти <tex dpi="130">k \log e</tex> блоков помещены в набор, изначальный текущий блок удаляется, потому что известно, что эти <tex dpi="130">k \log e</tex> блоков перемещены в правильный набор, и нам не важно где находился начальный текущий блок. Тот текущий блок находится в перемещенных <tex dpi="130">k \log e</tex> блоках.
+
1)  
  
 +
<tex>if level == 1</tex> тогда изучить размер набора. Если размер меньше или равен <tex>\sqrt{n}</tex>, то <tex>return</tex>. Иначе разделить этот набор в <tex>\le</tex> 3 набора используя лемму три, чтобы найти медиану а затем использовать лемму 6 для сортировки. Для набора где все элементы равны медиане, не рассматривать текущий блок и текущим блоком сделать следующий. Создать маркер, являющийся номером набора для каждого из чисел (0, 1 или 2). Затем направьте маркер для каждого числа назад к месту, где число находилось в начале. Также направьте двубитное число для каждого входного числа, указывающее на текущий блок. <tex>Return</tex>.
  
Стоит отметить, что после нескольких уровней деления размер наборов станет маленьким. Леммы [[#lemma3|3]], [[#lemma4|4]], [[#lemma5|5]] расчитаны на не очень маленькие наборы. Но поскольку сортируется набор из <tex dpi="130">n</tex> элементов в наборы размера <tex dpi="130">\sqrt{n}</tex>, то проблем быть не должно.
+
2)
  
 +
От <tex>u = 1</tex> до <tex>k</tex>
  
===Алгоритм сортировки===
+
2.1) Упаковать <tex>a^{(u)}_{i}</tex>-ый в часть из <tex>1/k</tex>-ых номеров контейнеров, где <tex>a^{(u)}_{i}</tex> содержит несколько непрерывных блоков, которые состоят из <tex>1/k</tex>-ых битов <tex>a_{i}</tex> и у которого текущий блок это самый крупный блок.
  
Algorithm <tex>Sort(advantage</tex>, <tex>level</tex>, <tex>a_{0}</tex>, <tex>a_{1}</tex>, <tex>\ldots</tex>, <tex>a_{t}</tex>)
+
2.2) Вызвать Sort(<tex>k \log\log n</tex>, <tex>level - 1</tex>, <tex>a^{(u)}_{0}</tex>, <tex>a^{(u)}_{1}</tex>, ..., <tex>a^{(u)}_{t}</tex>). Когда алгоритм возвращается из этой рекурсии, маркер, показывающий для каждого числа, к которому набору это число относится, уже отправлен назад к месту где число находится во входных данных. Число имеющее наибольшее число бит в <tex>a_{i}</tex>, показывающее на ткущий блок в нем, так же отправлено назад к <tex>a_{i}</tex>.
  
<tex>advantage</tex> {{---}} это неконсервативное преимущество равное <tex>k\log\log n</tex>, <tex>a_{i}</tex>-ые это входящие целые числа в наборе, которые надо отсортировать, <tex>level</tex> это уровень рекурсии.
+
2.3) Отправить <tex>a_{i}-ые к их наборам, используя лемму шесть.</tex>
  
# Если <tex>level</tex> равен <tex>1</tex> тогда изучаем размер набора. Если размер меньше или равен <tex>\sqrt{n}</tex>, то <tex>return</tex>. Иначе делим этот набор в <tex>\leqslant</tex> 3 набора, используя [[#lemma2|лемму №2]], чтобы найти медиану, а затем используем [[#lemma5|лемму №5]] для сортировки. Для набора, где все элементы равны медиане, не рассматриваем текущий блок и текущим блоком делаем следующий. Создаем маркер, являющийся номером набора для каждого из чисел (0, 1 или 2). Затем направляем маркер для каждого числа назад к месту, где число находилось в начале. Также направляем двубитное число для каждого входного числа, указывающее на текущий блок.
+
end.
# От <tex dpi="130">u = 1</tex> до <tex dpi="130">k</tex>
 
## Упаковываем <tex dpi="130">a^{(u)}_{i}</tex>-ый в часть из <tex dpi="130">1/k</tex>-ых номеров контейнеров. Где <tex dpi="130">a^{(u)}_{i}</tex> содержит несколько непрерывных блоков, которые состоят из <tex dpi="150">\frac{1}{k}</tex>-ых битов <tex dpi="130">a_{i}</tex>. При этом у <tex dpi="130">a^{(u)}_{i}</tex> текущий блок это самый крупный блок.
 
## Вызываем <tex>Sort(advantage</tex>, <tex>level - 1</tex>, <tex dpi="130">a^{(u)}_{0}</tex>, <tex dpi="130">a^{(u)}_{1}</tex>, <tex>\ldots</tex>, <tex dpi="130">a^{(u)}_{t}</tex>). Когда алгоритм возвращается из этой рекурсии, маркер, показывающий для каждого числа, к какому набору это число относится, уже направлен назад к месту, где число находится во входных данных. Число, имеющее наибольшее число бит в <tex dpi="130">a_{i}</tex>, показывающее на текущий блок в нем, так же направлено назад к <tex dpi="130">a_{i}</tex>.
 
## Отправляем <tex dpi="130">a_{i}</tex>-ые к их наборам, используя [[#lemma5|лемму №5]].
 
  
 
Algorithm IterateSort
 
Algorithm IterateSort
Call <tex>Sort(advantage</tex>, <tex dpi="130">\log_{k}((\log n)/4)</tex>, <tex dpi="130">a_{0}</tex>, <tex dpi="130">a_{1}</tex>, <tex dpi="130">\ldots</tex>, <tex dpi="130">a_{n - 1}</tex>);
+
Call Sort(<tex>k \log\log n</tex>, <tex>\log_{k}((\log n)/4)</tex>, <tex>a_{0}</tex>, <tex>a_{1}</tex>, ..., <tex>a_{n - 1}</tex>);
  
 
от 1 до 5
 
от 1 до 5
# Помещаем <tex dpi="130">a_{i}</tex> в соответствующий набор с помощью блочной сортировки (англ. ''bucket sort''), потому что наборов около <tex dpi="130">\sqrt{n}</tex>.
 
# Для каждого набора <tex dpi="130">S = </tex>{<tex dpi="130">a_{i_{0}}, a_{i_{1}}, \ldots, a_{i_{t}}</tex>}, если <tex dpi="130">t > \sqrt{n}</tex>, вызываем <tex>Sort(advantage</tex>, <tex dpi="130">\log_{k}(\frac{\log n}{4})</tex>, <tex dpi="130">a_{i_{0}}, a_{i_{1}}, \ldots, a_{i_{t}}</tex>).
 
 
Время работы алгоритма <tex dpi="150">O(\frac{n \log\log n}{\log k})</tex>, что доказывает лемму.
 
}}
 
 
 
 
==Уменьшение числа бит в числах==
 
Один из способов ускорить сортировку {{---}} уменьшить число бит в числе. Один из способов уменьшить число бит в числе {{---}} использовать деление пополам (эту идею впервые подал van Emde Boas). Деление пополам заключается в том, что количество оставшихся бит в числе уменьшается в 2 раза. Это быстрый способ, требующий <tex dpi="130">O(m)</tex> памяти. Для своего дерева Андерссон использует хеширование, что позволяет сократить количество памяти до <tex dpi="130">O(n)</tex>. Для того чтобы еще ускорить алгоритм, необходимо упаковать несколько чисел в один контейнер, чтобы затем за константное количество шагов произвести хеширование для всех чисел, хранимых в контейнере. Для этого используется хеш-функция для хеширования <tex dpi="130">n</tex> чисел в таблицу размера <tex dpi="130">O(n^2)</tex> за константное время без коллизий. Для этого используется модифицированная хеш-функция авторства: Dierzfelbinger и Raman.
 
 
 
Алгоритм: Пусть целое число <tex dpi="130">b \geqslant 0</tex> и пусть <tex dpi="130">U = \{0, \ldots, 2^b - 1\}</tex>. Класс <tex dpi="130">H_{b,s}</tex> хеш-функций из <tex dpi="130">U</tex> в <tex dpi="130">\{0, \ldots, 2^s - 1\}</tex> определен как <tex dpi="130">H_{b,s} = \{h_{a} \mid 0 < a < 2^b, a \equiv 1 (\bmod 2)\}</tex> и для всех <tex dpi="130">x</tex> из <tex dpi="130">U</tex>: <tex dpi="130">h_{a}(x) = (ax</tex> <tex dpi="130">\bmod</tex> <tex dpi="130">2^b)</tex> <tex dpi="130">div</tex> <tex dpi="130">2^{b - s}</tex>.
 
 
Данный алгоритм базируется на [[#lemma1|лемме №1]].
 
 
 
Взяв <tex dpi="130">s = 2 \log n</tex>, получаем хеш-функцию <tex dpi="130">h_{a}</tex>, которая захеширует <tex dpi="130">n</tex> чисел из <tex dpi="130">U</tex> в таблицу размера <tex dpi="130">O(n^2)</tex> без коллизий. Очевидно, что <tex dpi="130">h_{a}(x)</tex> может быть посчитана для любого <tex dpi="130">x</tex> за константное время. Если упаковать несколько чисел в один контейнер так, что они разделены несколькими битами нулей, то можно применить <tex dpi="130">h_{a}</tex> ко всему контейнеру, и в результате все хеш-значения для всех чисел в контейнере будут посчитаны. Заметим, что это возможно только потому, что в вычисление хеш-значения вовлечены только (<tex dpi="130">\bmod</tex> <tex dpi="130">2^b</tex>) и (<tex dpi="130">div</tex> <tex dpi="130">2^{b - s}</tex>).
 
 
 
Такая хеш-функция может быть найдена за <tex dpi="130">O(n^3)</tex>.
 
 
Следует отметить, что, несмотря на размер таблицы <tex dpi="130">O(n^2)</tex>, потребность в памяти не превышает <tex dpi="130">O(n)</tex>, потому что хеширование используется только для уменьшения количества бит в числе.
 
 
==Сортировка по ключу==
 
Предположим, что <tex dpi="130">n</tex> чисел должны быть отсортированы, и в каждом <tex dpi="130">\log m</tex> бит. Будем считать, что в каждом числе есть <tex dpi="130">h</tex> сегментов, в каждом из которых <tex dpi="130">\log</tex> <tex dpi="150">\frac{m}{h}</tex> бит. Теперь применяем хеширование ко всем сегментам и получаем <tex dpi="130">2h \log n</tex> бит хешированных значений для каждого числа. После сортировки на хешированных значениях для всех начальных чисел начальная задача по сортировке <tex dpi="130">n</tex> чисел по <tex dpi="130">\log m</tex> бит в каждом стала задачей по сортировке <tex dpi="130">n</tex> чисел по <tex dpi="130">\log</tex> <tex dpi="150">\frac{m}{h}</tex> бит в каждом.
 
 
 
Также рассмотрим проблему последующего разделения. Пусть <tex dpi="130">a_{1}</tex>, <tex dpi="130">a_{2}</tex>, <tex dpi="130">\ldots</tex>, <tex dpi="130">a_{p}</tex> {{---}} <tex dpi="130">p</tex> чисел и <tex dpi="130">S</tex> {{---}} множество чисeл. Необходимо разделить <tex dpi="130">S</tex> в <tex dpi="130">p + 1</tex> наборов, таких, что: <tex dpi="130">S_{0} < a_{1} < S_{1} < a_{2} < \ldots < a_{p} < S_{p}</tex>. Так как используется '''сортировка по ключу''' (англ. ''signature sorting'') то перед тем, как делать вышеописанное разделение, необходимо поделить биты в <tex dpi="130">a_{i}</tex> на <tex dpi="130">h</tex> сегментов и взять некоторые из них. Так же делим биты для каждого числа из <tex dpi="130">S</tex> и оставляем только один в каждом числе. По существу, для каждого <tex dpi="130">a_{i}</tex> берутся все <tex dpi="130">h</tex> сегментов. Если соответствующие сегменты <tex dpi="130">a_{i}</tex> и <tex dpi="130">a_{j}</tex> совпадают, то нам понадобится только один. Сегмент, который берется для числа в <tex dpi="130">S</tex> это сегмент, который выделяется из <tex dpi="130">a_{i}</tex>. Таким образом, начальная задача о разделении <tex dpi="130">n</tex> чисел по <tex dpi="130">\log m</tex> бит преобразуется в несколько задач на разделение с числами по <tex dpi="150">\frac{\log m}{h}</tex> бит.
 
 
 
'''Пример''':
 
[[Файл:Han-example.png|500px|thumb]]
 
 
<tex dpi="130">a_{1} = 3, a_{2} = 5, a_{3} = 7, a_{4} = 10, S = \{1, 4, 6, 8, 9, 13, 14\}</tex>.
 
 
Делим числа на два сегмента. Для <tex dpi="130">a_{1}</tex> получим верхний сегмент <tex dpi="130">0</tex>, нижний <tex dpi="130">3</tex>; <tex dpi="130">a_{2}</tex> {{---}} верхний <tex dpi="130">1</tex>, нижний <tex dpi="130">1</tex>; <tex dpi="130">a_{3}</tex> {{---}} верхний <tex dpi="130">1</tex>, нижний <tex dpi="130">3</tex>; <tex dpi="130">a_{4}</tex> {{---}} верхний <tex dpi="130">2</tex>, нижний <tex dpi="130">2</tex>. Для элементов из S получим: для <tex dpi="130">1</tex> нижний <tex dpi="130">1</tex>, так как он выделяется из нижнего сегмента <tex dpi="130">a_{1}</tex>; для <tex dpi="130">4</tex> нижний <tex dpi="130">0</tex>; для <tex dpi="130">8</tex> нижний <tex dpi="130">0</tex>; для <tex dpi="130">9</tex> нижний <tex dpi="130">1</tex>; для <tex dpi="130">13</tex> верхний <tex dpi="130">3</tex>; для <tex dpi="130">14</tex> верхний <tex dpi="130">3</tex>. Теперь все верхние сегменты, нижние сегменты <tex dpi="130">1</tex> и <tex dpi="130">3</tex>, нижние сегменты <tex dpi="130">4, 5, 6, 7,</tex> нижние сегменты  <tex dpi="130">8, 9, 10</tex> формируют <tex dpi="130">4</tex> новые задачи на разделение.
 
 
 
 
Использование '''сортировки по ключу''' в данном алгоритме:
 
 
Есть набор <tex dpi="130">T</tex> из <tex dpi="130">p</tex> чисел, которые отсортированы как <tex dpi="130">a_{1}, a_{2}, \ldots, a_{p}</tex>. Используем числа в <tex dpi="130">T</tex> для разделения набора <tex dpi="130">S</tex> из <tex dpi="130">q</tex> чисел <tex dpi="130">b_{1}, b_{2}, \ldots, b_{q}</tex> в <tex dpi="130">p + 1</tex> наборов <tex dpi="130">S_{0}, S_{1}, \ldots, S_{p}</tex>. Пусть <tex dpi="150">h = \frac{\log n}{c \log p}</tex> для константы <tex dpi="130">c > 1</tex>. (<tex dpi="150">\frac{h}{\log\log n \log p}</tex>)-битные числа могут храниться в одном контейнере, содержащим <tex dpi="150">\frac{\log n}{c \log\log n}</tex> бит. Сначала рассматриваем биты в каждом <tex dpi="130">a_{i}</tex> и каждом <tex dpi="130">b_{i}</tex> как сегменты одинаковой длины <tex dpi="150">\frac{h} {\log\log n}</tex>. Рассматриваем сегменты как числа. Чтобы получить неконсервативное преимущество для сортировки, числа в этих контейнерах (<tex dpi="130">a_{i}</tex>-ом и <tex dpi="130">b_{i}</tex>-ом) хешируются, и получается <tex dpi="150">\frac{h}{\log\log n}</tex> хешированных значений в одном контейнере. При вычислении хеш-значений сегменты не влияют друг на друга, можно даже отделить четные и нечетные сегменты в два контейнера. Не умаляя общности считаем, что хеш-значения считаются за константное время. Затем, посчитав значения, два контейнера объединяем в один. Пусть <tex dpi="130">a'_{i}</tex> {{---}} хеш-контейнер для <tex dpi="130">a_{i}</tex>, аналогично <tex dpi="130">b'_{i}</tex>. В сумме хеш-значения имеют <tex dpi="150">\frac{2 \log n}{c \log\log n}</tex> бит, хотя эти значения разделены на сегменты по <tex dpi="150">\frac{h}{ \log\log n}</tex> бит в каждом контейнере. Между сегментами получаются пустоты, которые забиваются нулями. Сначала упаковываются все сегменты в <tex dpi="150">\frac{2 \log n}{c \log\log n}</tex> бит. Потом рассматривается каждый хеш-контейнер как число, и эти хеш-контейнеры сортируются за линейное время (сортировка будет рассмотрена чуть позже). После этой сортировки биты в <tex dpi="130">a_{i}</tex> и <tex dpi="130">b_{i}</tex> разрезаны на <tex dpi="150">\frac{\log\log n}{h}</tex> сегментов. Таким образом, получилось дополнительное мультипликативное преимущество (англ. ''additional multiplicative advantage'') в <tex dpi="150">\frac{h} {\log\log n}</tex>.
 
 
После того, как вышеописанный процесс повторится <tex dpi="130">g</tex> раз, получится неконсервативное преимущество в <tex dpi="150">(\frac{h} {\log\log n})^g</tex> раз, в то время как потрачено только <tex dpi="130">O(gqt)</tex> времени, так как каждое многократное деление происходит за линейное время <tex dpi="130">O(qt)</tex>.
 
  
 +
начало
  
Хеш-функция, которая используется, находится следующим образом. Будут хешироватся сегменты, <tex dpi="150">\frac{\log\log n}{h}</tex>-ые, <tex dpi="150">(\frac{\log\log n}{h})^2</tex>-ые, <tex dpi="130">\ldots</tex> по счету в числе. Хеш-функцию для <tex dpi="150">(\frac{\log\log n}{h})^t</tex>-ых по счету сегментов, получаем нарезанием всех <tex dpi="130">p</tex> чисел на <tex dpi="150">(\frac{\log\log n}{h})^t</tex> сегментов. Рассматривая каждый сегмент как число, получаем <tex dpi="150">p(\frac{\log\log n}{h})^t</tex> чисел. Затем получаем одну хеш-функцию для этих чисел. Так как <tex dpi="130">t < \log n</tex>, то получится не более <tex dpi="130">\log n</tex> хеш-функций.
+
Поместить <tex>a_{i}</tex> в соответствующий набор с помощью bucket sort потому, что наборов около <tex>\sqrt{n}</tex>
  
 +
Для каждого набора <tex>S = </tex>{<tex>a_{i_{0}}, a_{i_{1}}, ..., a_{i_{t}}</tex>}, если <tex>t > sqrt{n}</tex>, вызвать Sort(<tex>k \log\log n</tex>, <tex>\log_{k}((\log n)/4)</tex>, <tex>a_{i_{0}}, a_{i_{1}}, ..., a_{i_{t}}</tex>)
  
Рассмотрим сортировку за линейное время, о которой было упомянуто ранее. Предполагается, что хешированные значения для каждого контейнера упакованы в <tex dpi="150">\frac{2 \log n}{c \log\log n}</tex> бит. Есть <tex dpi="130">t</tex> наборов, в каждом из которых <tex dpi="130">q + p</tex> хешированных контейнеров по <tex dpi="150">\frac{2 \log n}{c \log\log n}</tex> бит в каждом. Эти контейнеры должны быть отсортированы в каждом наборе. Комбинируя все хеш-контейнеры в один pool, сортируем следующим образом.
+
конец
  
 +
Время работы алгоритма <tex>O(n \log\log n/ \log k)</tex>, что доказывает лемму 2.
  
Операция '''сортировки за линейное время''' (англ. ''Linear-Time-Sort'')
+
==Собственно сортировка с использованием O(nloglogn) времени и памяти==
 +
Для сортировки <tex>n</tex> целых чисел в диапазоне от {<tex>0, 1, ..., m - 1</tex>} мы предполагаем, что используем контейнер длины <tex>O(\log (m + n))</tex> в нашем консервативном алгоритме. Мы всегда считаем что все числа упакованы в контейнеры одинаковой длины.
  
Входные данные: <tex dpi="150">r \geqslant n^{\frac{2}{5}}</tex> чисел <tex dpi="130">d_{i}</tex>, <tex dpi="130">d_{i}.value</tex> — значение числа <tex dpi="130">d_{i}</tex>, в котором <tex dpi="150">\frac{2 \log n}{c \log\log n}</tex> бит, <tex dpi="130">d_{i}.set</tex> — набор, в котором находится <tex dpi="130">d_{i}</tex>. Следует отметить, что всего есть <tex dpi="130">t</tex> наборов.
+
Берем <tex>1/e = 5</tex> для экспоненциального поискового дереве Андерссона. Поэтому у корня будет <tex>n^{1/5}</tex> детей и каждое ЭП-дерево в каждом ребенке будет иметь <tex>n^{4/5}</tex> листьев. В отличии от оригинального дерева, мы будем вставлять не один элемент за раз а <tex>d^2</tex>, где <tex>d</tex> {{---}} количество детей узла дерева, где числа должны спуститься вниз.
 +
Но мы не будем сразу опускать донизу все <tex>d^2</tex> чисел. Мы будем полностью опускать все <tex>d^2</tex> чисел на один уровень. В корне мы опустим <tex>n^{2/5}</tex> чисел на следующий уровень. После того, как мы опустили все числа на следующий уровень мы успешно разделили числа на <tex>t_{1} = n^{1/5}</tex> наборов <tex>S_{1}, S_{2}, ..., S_{t_{1}}</tex>, в каждом из которых <tex>n^{4/5}</tex> чисел и <tex>S_{i} < S_{j}, i < j</tex>. Затем мы берем <tex>n^{(4/5)(2/5)}</tex> чисел из <tex>S_{i}</tex> за раз и опускаем их на следующий уровень ЭП-дерева. Повторяем это, пока все числа не опустятся на следующий уровень. На этом шаге мы разделили числа на <tex>t_{2} = n^{1/5}n^{4/25} = n^{9/25}</tex> наборов <tex>T_{1}, T_{2}, ..., T_{t_{2}}</tex> в каждом из которых <tex>n^{16/25}</tex> чисел, аналогичным наборам <tex>S_{i}</tex>. Теперь мы можем дальше опустить числа в нашем ЭП-дереве.
  
# Сортируем все <tex dpi="130">d_{i}</tex> по <tex dpi="130">d_{i}.value</tex>, используя bucket sort. Пусть все отсортированные числа в <tex dpi="130">A[1..r]</tex>. Этот шаг занимает линейное время, так как сортируется не менее <tex dpi="150">n^{\frac{2}{5}}</tex> чисел.
+
Нетрудно заметить, что ребалансирока занимает <tex>O(n \log\log n)</tex> времени с <tex>O(n)</tex> временем на уровень. Аналогично стандартному ЭП-дереву Андерссона.
# Помещаем все <tex dpi="130">A[j]</tex> в <tex dpi="130">A[j].set</tex>.
 
  
==Сортировка с использованием O(n log log n) времени и памяти==
+
Нам следует нумеровать уровни ЭП-дерева с корня, начиная с нуля. Рассмотрим спуск вниз на уровне <tex>s</tex>. Мы имеем <tex>t = n^{1 - (4/5)^s}</tex> наборов по <tex>n^{(4/5)^s}</tex> чисел в каждом. Так как каждый узел на данном уровне имеет <tex>p = n^{(1/5)(4/5)^s}</tex> детей, то на <tex>s + 1</tex> уровень мы опустим <tex>q = n^{(2/5)(4/5)^s}</tex> чисел для каждого набора или всего <tex>qt \ge n^{2/5}</tex> чисел для всех наборов за один раз.
Для сортировки <tex dpi="130">n</tex> целых чисел в диапазоне <tex dpi="130">\{0, 1, \ldots, m - 1\}</tex> предполагается, что в нашем консервативном алгоритме используется контейнер длины <tex dpi="130">O(\log (m + n))</tex>. Далее везде считается, что все числа упакованы в контейнеры одинаковой длины.  
 
  
 +
Спуск вниз можно рассматривать как сортировку <tex>q</tex> чисел в каждом наборе вместе с <tex>p</tex> числами <tex>a_{1}, a_{2}, ..., a_{p}</tex> из ЭП-дерева, так, что эти <tex>q</tex> чисел разделены в <tex>p + 1</tex> наборов <tex>S_{0}, S_{1}, ..., S_{p}</tex> таких, что <tex>S_{0} < </tex>{<tex>a_{1}</tex>} < ... < {<tex>a_{p}</tex>}<tex> < S_{p}</tex>.
  
Берем <tex dpi="130">1/e = 5</tex> для ЭП-дерева Андерссона. Следовательно, у корня будет <tex dpi="150">n^{\frac{1}{5}}</tex> детей, и каждое ЭП-дерево в каждом ребенке будет иметь <tex dpi="150">n^{\frac{4}{5}}</tex> листьев. В отличие от оригинального дерева, за раз вставляется не один элемент, а <tex dpi="130">d^2</tex>, где <tex dpi="130">d</tex> — количество детей узла дерева, в котором числа должны спуститься вниз. Алгоритм полностью опускает все <tex dpi="130">d^2</tex> чисел на один уровень. В корне опускаются <tex dpi="150">n^{\frac{2}{5}}</tex> чисел на следующий уровень. После того, как все числа опустились на следующий уровень, они успешно разделились на <tex dpi="130">t_{1} = n^{1/5}</tex> наборов <tex dpi="130">S_{1}, S_{2}, \ldots, S_{t_{1}}</tex>, в каждом из которых <tex dpi="150">n^{\frac{4}{5}}</tex> чисел и <tex dpi="130">S_{i} < S_{j}, i < j</tex>. Затем, берутся <tex dpi="150">n^{\frac{8}{25}}</tex> чисел из <tex dpi="130">S_{i}</tex> и опускаются на следующий уровень ЭП-дерева. Это повторяется, пока все числа не опустятся на следующий уровень. На этом шаге числа разделены на <tex dpi="150">t_{2} = n^{\frac{1}{5}}n^{\frac{4}{25}} = n^{\frac{9}{25}}</tex> наборов <tex dpi="130">T_{1}, T_{2}, \ldots, T_{t_{2}}</tex>, аналогичных наборам <tex dpi="130">S_{i}</tex>, в каждом из которых <tex dpi="150">n^{\frac{16}{25}}</tex> чисел. Теперь числа опускаются дальше в ЭП-дереве.
+
Так как нам не надо полностью сортировать <tex>q</tex> чисел и <tex>q = p^2</tex>, есть возможность использовать лемму 2 для сортировки. Для этого нам надо неконсервативное преимущество которое мы получим ниже. Для этого используем линейную технику многократного деления (multi-dividing technique) чтобы добиться этого.
  
Нетрудно заметить, что перебалансирока занимает <tex dpi="130">O(n \log\log n)</tex> времени с <tex dpi="130">O(n)</tex> времени на уровень, аналогично стандартному ЭП-дереву Андерссона.
+
Для этого воспользуемся signature sorting. Адаптируем этот алгоритм для нас. Предположим у нас есть набор <tex>T</tex> из <tex>p</tex> чисел, которые уже отсортированы как <tex>a_{1}, a_{2}, ..., a_{p}</tex>, и мы хотим использовать числа в <tex>T</tex> для разделения <tex>S</tex> из <tex>q</tex> чисел <tex>b_{1}, b_{2}, ..., b_{q}</tex> в <tex>p + 1</tex> наборов <tex>S_{0}, S_{1}, ..., S_{p}</tex> что <tex>S_{0}</tex> < {<tex>a_{1}</tex>} < <tex>S_{1}</tex> < ... < {<tex>a_{p}</tex>} < <tex>S_{p}</tex>. Назовем это разделением <tex>q</tex> чисел <tex>p</tex> числами. Пусть <tex>h = \log n/(c \log p)</tex> для константы <tex>c > 1</tex>. <tex>h/ \log\log n \log p</tex> битные числа могут быть хранены в одном контейнере, так что одно слово хранит <tex>(\log n)/(c \log\log n)</tex> бит. Сначала рассматриваем биты в каждом <tex>a_{i}</tex> и каждом <tex>b_{i}</tex> как сегменты одинаковой длины <tex>h/ \log\log n</tex>. Рассматриваем сегменты как числа. Чтобы получить неконсервативное преимущество для сортировки мы хэштруем числа в этих контейнерах (<tex>a_{i}</tex>-ом и <tex>b_{i}</tex>-ом) чтобы получить <tex>h/ \log\log n</tex> хэшированных значений в одном контейнере. Чтобы получить значения сразу, при вычислении хэш значений сегменты не влияют друг на друга, мы можем даже отделить четные и нечетные сегменты в два контейнера. Не умаляя общности считаем, что хэш значения считаются за константное время. Затем, посчитав значения мы объединяем два контейнера в один. Пусть <tex>a'_{i}</tex> хэш контейнер для <tex>a_{i}</tex>, аналогично <tex>b'_{i}</tex>. В сумме хэш значения имеют <tex>(2 \log n)/(c \log\log n)</tex> бит. Хотя эти значения разделены на сегменты по <tex>h/ \log\log n</tex> бит в каждом контейнере. Между сегментами получаются пустоты, которые мы забиваем нулями. Сначала упаковываем все сегменты в <tex>(2 \log n)/(c \log\log n)</tex> бит. Потом рассмотрим каждый хэш контейнер как число и отсортируем эти хэш слова за линейное время (сортировка рассмотрена чуть позже). После этой сортировки биты в <tex>a_{i}</tex> и <tex>b_{i}</tex> разрезаны на <tex>\log\log n/h</tex>. Таким образом мы получили дополнительное мультипликативное преимущество в <tex>h/ \log\log n</tex> (additional multiplicative advantage).
  
 +
После того, как мы повторили вышеописанный процесс <tex>g</tex> раз мы получили неконсервативное преимущество в <tex>(h/ \log\log n)^g</tex> раз, в то время как мы потратили только <tex>O(gqt)</tex> времени, так как каждое многократное деление делятся за линейное время <tex>O(qt)</tex>.
  
Нам следует нумеровать уровни ЭП-дерева с корня, начиная с нуля. Рассмотрим спуск вниз на уровне <tex dpi="130">s</tex>. Имеется <tex dpi="150">t = n^{1 - (\frac{4}{5})^S}</tex> наборов по <tex dpi="150">n^{(\frac{4}{5})^S}</tex> чисел в каждом. Так как каждый узел на данном уровне имеет <tex dpi="150">p = n^{\frac{1}{5} \cdot (\frac{4}{5})^S}</tex> детей, то на <tex dpi="130">s + 1</tex> уровень опускаются <tex dpi="150">q = n^{\frac{2}{5} \cdot (\frac{4}{5})^S}</tex> чисел для каждого набора, или всего <tex dpi="150">qt \geqslant n^{\frac{2}{5}}</tex> чисел для всех наборов за один раз.
+
Хэш функция, которую мы используем, находится следующим образом. Мы будем хэшировать сегменты, которые <tex>\log\log n/h</tex>-ые, <tex>(\log\log n/h)^2</tex>-ые, ... от всего числа. Для сегментов вида <tex>(\log\log n/h)^t</tex>, получаем нарезанием всех <tex>p</tex> чисел на <tex>(\log\log n/h)^t</tex> сегментов. Рассматривая каждый сегмент как число мы получаем <tex>p(\log\log n/h)^t</tex> чисел. Затем получаем одну хэш функцию для этих чисел. Так как <tex>t < \log n</tex> то мы получим не более <tex>\log n</tex> хэш функций.
  
 +
Рассмотрим сортировку за линейное время о которой было упомянуто ранее. Предполагаем, что мы упаковали хэшированные значения для каждого контейнера в <tex>(2 \log n)/(c \log\log n)</tex> бит. У нас есть <tex>t</tex> наборов в каждом из которых <tex>q + p</tex> хэшированных контейнеров по <tex>(2 \log n)/(c \log\log n)</tex> бит в каждом. Эти числа должны быть отсортированы в каждом наборе. Мы комбинируем все хэш контейнеры в один pool и сортируем следующим образом.
  
Спуск вниз можно рассматривать как сортировку <tex dpi="130">q</tex> чисел в каждом наборе вместе с <tex dpi="130">p</tex> числами <tex dpi="130">a_{1}, a_{2}, \ldots, a_{p}</tex> из ЭП-дерева, так, что эти <tex dpi="130">q</tex> чисел разделены в <tex dpi="130">p + 1</tex> наборов <tex dpi="130">S_{0}, S_{1}, \ldots, S_{p}</tex> таких, что <tex dpi="130">S_{0} < a_{1} < \ldots < a_{p} < S_{p}</tex>.
+
Procedure linear-Time-Sort
  
 +
Входные данные: <tex>r > = n^{2/5}</tex> чисел <tex>d_{i}</tex>, <tex>d_{i}</tex>.value значение числа <tex>d_{i}</tex> в котором <tex>(2 \log n)/(c \log\log n)</tex> бит, <tex>d_{i}.set</tex> набор, в котором находится <tex>d_{i}</tex>, следует отметить что всего <tex>t</tex> наборов.
  
Так как <tex dpi="130">q</tex> чисел не надо полностью сортировать и <tex dpi="130">q = p^2</tex>, то можно использовать [[#lemma6|лемму №6]] для сортировки. Для этого необходимо неконсервативное преимущество, которое получается с помощью [[Сортировка Хана#Signature sorting|signature sorting]]. Для этого используется линейная техника многократного деления (англ. ''multi-dividing technique'').
+
1) Сортировать все <tex>d_{i}</tex> по <tex>d_{i}</tex>.value используя bucket sort. Пусть все сортированные числа в A[1..r]. Этот шаг занимает линейное время так как сортируется не менее <tex>n^{2/5}</tex> чисел.
  
 +
2) Поместить все A[j] в A[j].set
  
После <tex dpi="130">g</tex> сокращений бит в  [[Сортировка Хана#Signature sorting|signature sorting]] получаем неконсервативное преимущество в <tex dpi="150">(\frac{h}{ \log\log n})^g</tex>. Мы не волнуемся об этих сокращениях до конца потому, что после получения неконсервативного преимущества мы можем переключиться на [[#lemma6|лемму №6]] для завершения разделения <tex dpi="130">q</tex> чисел с помощью <tex dpi="130">p</tex> чисел на наборы. Заметим, что по природе битового сокращения начальная задача разделения для каждого набора перешла в <tex dpi="130">w</tex> подзадач разделения на <tex dpi="130">w</tex> поднаборов для какого-то числа <tex dpi="130">w</tex>.
+
Таким образом мы заполнили все наборы за линейное время.
  
 +
Как уже говорилось ранее после <tex>g</tex> сокращений бит мы получили неконсервативное преимущество в <tex>(h/ \log\log n)^g</tex>. Мы не волнуемся об этих сокращениях до конца потому, что после получения неконсервативного преимущества мы можем переключиться на лемму два для завершения разделения <tex>q</tex> чисел с помощью <tex>p</tex> чисел на наборы. Заметим, что по природе битового сокращения, начальная задача разделения для каждого набора перешла в <tex>w</tex> подзадачи разделения на <tex>w</tex> поднаборы для какого-то числа <tex>w</tex>.
  
Теперь для каждого набора все его поднаборы в подзадачах собираются в один набор. Затем, используя [[#lemma6|лемму №6]], делается разделение. Так как получено неконсервативное преимущество в <tex dpi="150">(\frac{h}{\log\log n})^g</tex> и работа происходит на уровнях не ниже, чем <tex dpi="130">2 \log\log\log n</tex>, то алгоритм занимает <tex dpi="150">O(\frac{qt \log\log n}{g(\log h - \log\log\log n) - \log\log\log n}) = O(\log\log n)</tex> времени.
+
Теперь для каждого набора мы собираем все его поднаборы в подзадачах в один набор. Затем используя лемму два делаем разделение. Так как мы имеем неконсервативное преимущество в <tex>(h/ \log\log n)^g</tex> и мы работаем на уровнях не ниже чем <tex>2 \log\log\log n</tex>, то алгоритм занимает <tex>O(qt \log\log n/(g(\log h - \log\log\log n) - \log\log\log n)) = O(\log\log n)</tex> времени.
  
 +
Мы разделили <tex>q</tex> чисел <tex>p</tex> числами в каждый набор. То есть мы получили <tex>S_{0}</tex> < {<tex>e_{1}</tex>} < <tex>S_{1}</tex> < ... < {<tex>e_{p}</tex>} < <tex>S_{p}</tex>, где <tex>e_{i}</tex> это сегмент <tex>a_{i}</tex> полученный с помощью битового сокращения. Мы получили такое разделение комбинированием всех поднаборов в подзадачах. Предположим числа хранятся в массиве <tex>B</tex> так, что числа в <tex>S_{i}</tex> предшествуют числам в <tex>S_{j}</tex> если <tex>i < j</tex> и <tex>e_{i}</tex> хранится после <tex>S_{i - 1}</tex> но до <tex>S_{i}</tex>. Пусть <tex>B[i]</tex> в поднаборе <tex>B[i].subset</tex>. Чтобы позволить разделению выполнится для каждого поднабора мы делаем следующее.
  
В итоге разделились <tex dpi="130">q</tex> чисел <tex dpi="130">p</tex> числами в каждый набор. То есть получилось, что <tex dpi="130">S_{0} < e_{1} < S_{1} < \ldots < e_{p} < S_{p}</tex>, где <tex dpi="130">e_{i}</tex> {{---}} сегмент <tex dpi="130">a_{i}</tex>, полученный с помощью битового сокращения. Такое разделение получилось комбинированием всех поднаборов в подзадачах. Предполагаем, что числа хранятся в массиве <tex dpi="130">B</tex> так, что числа в <tex dpi="130">S_{i}</tex> предшествуют числам в <tex dpi="130">S_{j}</tex> если <tex dpi="130">i < j</tex> и <tex dpi="130">e_{i}</tex> хранится после <tex dpi="130">S_{i - 1}</tex>, но до <tex dpi="130">S_{i}</tex>.
+
Помещаем все <tex>B[j]</tex> в <tex>B[j].subset</tex>
 
 
 
 
Пусть <tex dpi="130">B[i]</tex> находится в поднаборе <tex dpi="130">B[i].subset</tex>. Чтобы позволить разделению выполниться, для каждого поднабора помещаем все <tex dpi="130">B[j]</tex> в <tex dpi="130">B[j].subset</tex>.
 
  
 
На это потребуется линейное время и место.
 
На это потребуется линейное время и место.
  
 +
Теперь рассмотрим проблему упаковки, которую решим следующим образом. Будем считать что число бит в контейнере <tex>\log m \ge \log\log\log n</tex>, потому, что в противном случае можно использовать radix sort для сортировки чисел. У контейнера есть <tex>h/ \log\log n</tex> хэшированных значений (сегментов) в себе на уровне <tex>\log h</tex> в ЭП-дереве. Полное число хэшированных бит в контейнере <tex>(2 \log n)(c \log\log n)</tex> бит. Хотя хэшированны биты в контейнере выглядят как <tex>0^{i}t_{1}0^{i}t_{2}...t_{h/ \log\log n}</tex>, где <tex>t_{k}</tex>-ые это хэшированные биты, а нули это просто нули. Сначала упаковываем <tex>\log\log n</tex> контейнеров в один и получаем <tex>w_{1} = 0^{j}t_{1, 1}t_{2, 1}...t_{\log\log n, 1}0^{j}t_{1, 2}...t_{\log\log n, h/ \log\log n}</tex> где <tex>t_{i, k}</tex>: <tex>k = 1, 2, ..., h/ \log\log n</tex> из <tex>i</tex>-ого контейнера. мы ипользуем <tex>O(\log\log n)</tex> шагов, чтобы упаковать <tex>w_{1}</tex> в <tex>w_{2} = 0^{jh/ \log\log n}t_{1, 1}t_{2, 1} ... t_{\log\log n, 1}t_{1, 2}t_{2, 2} ... t_{1, h/ \log\log n}t_{2, h/ \log\log n} ... t_{\log\log n, h/ \log\log n}</tex>. Теперь упакованные хэш биты занимают <tex>2 \log n/c</tex> бит. Мы используем <tex>O(\log\log n)</tex> времени чтобы распаковать <tex>w_{2}</tex> в <tex>\log\log n</tex> контейнеров <tex>w_{3, k} = 0^{jh/ \log\log n}0^{r}t_{k, 1}O^{r}t_{k, 2} ... t_{k, h/ \log\log n} k = 1, 2, ..., \log\log n</tex>. Затем используя <tex>O(\log\log n)</tex> времени упаковываем эти <tex>\log\log n</tex> контейнеров в один <tex>w_{4} = 0^{r}t_{1, 1}0^{r}t_{1, 2} ... t_{1, h/ \log\log n}0^{r}t_{2, 1} ... t_{\log\log n, h/ \log\log n}</tex>. Затем используя <tex>O(\log\log n)</tex> шагов упаковать <tex>w_{4}</tex> в <tex>w_{5} = 0^{s}t_{1, 1}t_{1, 2} ... t_{1, h/ \log\log n}t_{2, 1}t_{2, 2} ... t_{\log\log n, h/ \log\log n}</tex>. В итоге мы используем <tex>O(\log\log n)</tex> времени для упаковки <tex>\log\log n</tex> контейнеров. Считаем что время потраченное на одно слово {{---}} константа.
  
Теперь рассмотрим проблему упаковки, которая решается следующим образом. Считается, что число бит в контейнере <tex dpi="130">\log m \geqslant \log\log\log n</tex>, потому что в противном случае можно использовать radix sort для сортировки чисел. У контейнера есть <tex dpi="150">\frac{h}{\log\log n}</tex> хешированных значений (сегментов) в себе на уровне <tex dpi="130">\log h</tex> в ЭП-дереве. Полное число хешированных бит в контейнере равно <tex dpi="130">(2 \log n)(c \log\log n)</tex> бит. Хешированные биты в контейнере выглядят как <tex dpi="130">0^{i}t_{1}0^{i}t_{2} \ldots t</tex><tex dpi="150">_{\frac{h}{\log\log n}}</tex>, где <tex dpi="130">t_{k}</tex>-ые — хешированные биты, а нули {{---}} это просто нули. Сначала упаковываем <tex dpi="130">\log\log n</tex> контейнеров в один и получаем <tex dpi="130">w_{1} = 0^{j}t_{1, 1}t_{2, 1} \ldots t_{\log\log n, 1}0^{j}t_{1, 2} \ldots t_{\log\log n,}</tex><tex dpi="150">_{  \frac{h}{\log\log n}}</tex>, где <tex dpi="130">t_{i, k}</tex>: элемент с номером <tex dpi="130">k = 1, 2,  \ldots, </tex><tex dpi="150">\frac{h}{\log\log n}</tex> из <tex dpi="130">i</tex>-ого контейнера. Используем <tex dpi="130">O(\log\log n)</tex> шагов, чтобы упаковать <tex dpi="130">w_{1}</tex> в <tex dpi="130">w_{2} = 0</tex><tex dpi="150">^{\frac{jh}{\log\log n}}</tex><tex dpi="130">t_{1, 1}t_{2, 1} \ldots t_{\log\log n, 1}t_{1, 2}t_{2, 2} \ldots t_{1,}</tex><tex dpi="150">_{ \frac{h}{\log\log n}}</tex><tex dpi="130">t_{2,}</tex><tex dpi="150">_{ \frac{h}{\log\log n}}</tex><tex dpi="130">\ldots t_{\log\log n,}</tex><tex dpi="150">_{ \frac{h}{\log\log n}}</tex>. Теперь упакованные хеш-биты занимают <tex dpi="130">2 \log</tex><tex dpi="150">\frac{n}{c}</tex> бит. Используем <tex dpi="130">O(\log\log n)</tex> времени чтобы распаковать <tex dpi="130">w_{2}</tex> в <tex dpi="130">\log\log n</tex> контейнеров <tex dpi="130">w_{3, k} = 0</tex><tex dpi="150">^{\frac{jh}{\log\log n}}</tex><tex dpi="130">0^{r}t_{k, 1}0^{r}t_{k, 2} \ldots t_{k,}</tex><tex dpi="150">_{ \frac{h}{\log\log n}}</tex> <tex dpi="130">k = 1, 2, \ldots, \log\log n</tex>. Затем, используя <tex dpi="130">O(\log\log n)</tex> времени, упаковываем эти <tex dpi="130">\log\log n</tex> контейнеров в один <tex dpi="130">w_{4} = 0^{r}t_{1, 1}0^{r}t_{1, 2} \ldots t_{1,}</tex><tex dpi="150">_{ \frac{h}{\log\log n}}</tex><tex dpi="130">0^{r}t_{2, 1} \ldots t_{\log\log n,}</tex><tex dpi="150">_{ \frac{h}{\log\log n}}</tex>. Затем, используя <tex dpi="130">O(\log\log n)</tex> шагов, упаковываем <tex dpi="130">w_{4}</tex> в <tex dpi="130">w_{5} = 0^{s}t_{1, 1}t_{1, 2} \ldots t_{1,}</tex><tex dpi="150">_{ \frac{h}{\log\log n}}</tex><tex dpi="130">t_{2, 1}t_{2, 2} \ldots t_{\log\log n,}</tex><tex dpi="150">_{ \frac{h}{\log\log n}}</tex>. В итоге используется <tex dpi="130">O(\log\log n)</tex> времени для упаковки <tex dpi="130">\log\log n</tex> контейнеров. Считаем, что время, потраченное на один контейнер — константа.
+
==Литераура==
 
+
Deterministic Sorting in O(n \log\log n) Time and Linear Space. Yijie Han.
==См. также==
 
* [[Сортировка подсчетом]]
 
* [[Цифровая сортировка]]
 
 
 
==Источники информации==
 
* [http://www.sciencedirect.com/science/article/pii/S019667740300155X Deterministic Sorting in O(n log log n) Time and Linear Space. Yijie Han.]
 
* А. Андерссон. Fast deterministic sorting and searching in linear space. Proc. 1996 IEEE Symp. on Foundations of Computer Science. 135-141(1996)
 
* [http://dl.acm.org/citation.cfm?id=1236460 A. Andersson, M. Thorup. Dynamic ordered sets with exponential search trees.]
 
* [[wikipedia:en:Integer_sorting|Wikipedia {{---}} Integer sorting]]
 
  
 
[[Категория: Дискретная математика и алгоритмы]]
 
[[Категория: Дискретная математика и алгоритмы]]
  
[[Категория: Сортировка]]
+
[[Категория: Сортировки]]

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)

Шаблоны, используемые на этой странице: