Сортировка слиянием — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м
 
Строка 93: Строка 93:
 
*[http://ru.wikipedia.org/wiki/Mergesort Википедия {{---}} сортировка слиянием]
 
*[http://ru.wikipedia.org/wiki/Mergesort Википедия {{---}} сортировка слиянием]
 
*[http://www.sorting-algorithms.com/merge-sort Визуализатор]
 
*[http://www.sorting-algorithms.com/merge-sort Визуализатор]
*[http://ru.wikibooks.org/wiki/%D0%9F%D1%80%D0%B8%D0%BC%D0%B5%D1%80%D1%8B_%D1%80%D0%B5%D0%B0%D0%BB%D0%B8%D0%B7%D0%B0%D1%86%D0%B8%D0%B8_%D1%81%D0%BE%D1%80%D1%82%D0%B8%D1%80%D0%BE%D0%B2%D0%BA%D0%B8_%D1%81%D0%BB%D0%B8%D1%8F%D0%BD%D0%B8%D0%B5%D0%BC Викиучебник {{---}} Примеры реализации на различных языках программирования]
+
*[https://ru.wikibooks.org/wiki/Примеры_реализации_сортировки_слиянием Викиучебник {{---}} Примеры реализации на различных языках программирования]
  
  

Текущая версия на 15:42, 17 января 2019

Сортировка слиянием (англ. Merge sort) — алгоритм сортировки, использующий [math]O(n)[/math] дополнительной памяти и работающий за [math]O(n\log(n))[/math] времени.

Принцип работы[править]

Пример работы процедуры слияния.
Пример работы рекурсивного алгоритма сортировки слиянием
Пример работы итеративного алгоритма сортировки слиянием

Алгоритм использует принцип «разделяй и властвуй»: задача разбивается на подзадачи меньшего размера, которые решаются по отдельности, после чего их решения комбинируются для получения решения исходной задачи. Конкретно процедуру сортировки слиянием можно описать следующим образом:

  1. Если в рассматриваемом массиве один элемент, то он уже отсортирован — алгоритм завершает работу.
  2. Иначе массив разбивается на две части, которые сортируются рекурсивно.
  3. После сортировки двух частей массива к ним применяется процедура слияния, которая по двум отсортированным частям получает исходный отсортированный массив.

Слияние двух массивов[править]

У нас есть два массива [math]a[/math] и [math]b[/math] (фактически это будут две части одного массива, но для удобства будем писать, что у нас просто два массива). Нам надо получить массив [math]c[/math] размером [math]|a| + |b|[/math]. Для этого можно применить процедуру слияния. Эта процедура заключается в том, что мы сравниваем элементы массивов (начиная с начала) и меньший из них записываем в финальный. И затем, в массиве у которого оказался меньший элемент, переходим к следующему элементу и сравниваем теперь его. В конце, если один из массивов закончился, мы просто дописываем в финальный другой массив. После мы наш финальный массив записываем заместо двух исходных и получаем отсортированный участок.

Множество отсортированных списков с операцией [math]\mathrm{merge}[/math] является моноидом, где нейтральным элементом будет пустой список.

Ниже приведён псевдокод процедуры слияния, который сливает две части массива [math]a[/math][math][left; mid)[/math] и [math][mid; right)[/math]

function merge(a : int[n]; left, mid, right : int):
    it1 = 0
    it2 = 0
    result : int[right - left]
  
    while left + it1 < mid and mid + it2 < right
        if a[left + it1] < a[mid + it2]
            result[it1 + it2] = a[left + it1]
            it1 += 1
        else
            result[it1 + it2] = a[mid + it2]
            it2 += 1
  
    while left + it1 < mid
        result[it1 + it2] = a[left + it1]
        it1 += 1
  
    while mid + it2 < right
        result[it1 + it2] = a[mid + it2]
        it2 += 1
  
    for i = 0 to it1 + it2
        a[left + i] = result[i]

Рекурсивный алгоритм[править]

Функция сортирует подотрезок массива с индексами в полуинтервале [math][left; right)[/math].

function mergeSortRecursive(a : int[n]; left, right : int):
    if left + 1 >= right
        return
    mid = (left + right) / 2
    mergeSortRecursive(a, left, mid)
    mergeSortRecursive(a, mid, right)
    merge(a, left, mid, right)

Итеративный алгоритм[править]

При итеративном алгоритме используется на [math]O(\log n)[/math] меньше памяти, которая раньше тратилась на рекурсивные вызовы.

function mergeSortIterative(a : int[n]):
    for i = 1 to n, i *= 2
        for j = 0 to n - i, j += 2 * i
            merge(a, j, j + i, min(j + 2 * i, n))

Время работы[править]

Чтобы оценить время работы этого алгоритма, составим рекуррентное соотношение. Пускай [math]T(n)[/math] — время сортировки массива длины [math]n[/math], тогда для сортировки слиянием справедливо [math]T(n)=2T(n/2)+O(n)[/math]
[math]O(n)[/math] — время, необходимое на то, чтобы слить два массива длины [math]n[/math]. Распишем это соотношение:

[math]T(n)=2T(n/2)+O(n)=4T(n/4)+2O(n)=\dots=T(1)+\log(n)O(n)=O(n\log(n))[/math].

Сравнение с другими алгоритмами[править]

Достоинства:

Недостатки:

  • требуется дополнительно [math]O(n)[/math] памяти, но можно модифицировать до [math]O(1)[/math].

См. также[править]

Примечания[править]

Источники информации[править]