Редактирование: Список заданий по АСД 2к 2015 осень

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 135: Строка 135:
 
# Докажите вершнинную теорему Менгера: минимальное число вершин, которые необходимо удалить в графе, чтобы из $s$ в $t$ не было пути, равно максимальному числу вершинно непересекающихся путей из $s$ в $t$ ($s$ и $t$ удалять нельзя).
 
# Докажите вершнинную теорему Менгера: минимальное число вершин, которые необходимо удалить в графе, чтобы из $s$ в $t$ не было пути, равно максимальному числу вершинно непересекающихся путей из $s$ в $t$ ($s$ и $t$ удалять нельзя).
 
# Глобальным разрезом называется разбиение множества вершин графа на два непустых непересекающихся множества. Сведите задачу о глобальном разрезе к поиску $O(V)$ максимальных потоков.
 
# Глобальным разрезом называется разбиение множества вершин графа на два непустых непересекающихся множества. Сведите задачу о глобальном разрезе к поиску $O(V)$ максимальных потоков.
 +
# Сформулируйте и докажите аналогичную лемме о сумме лемму о разности потоков.
 
# Постройте граф, в котором алгоритм Форда-Фалкерсона (ФФ) находит $\Omega(C_{max})$ путей. Веса всех рёбер целочисленные.
 
# Постройте граф, в котором алгоритм Форда-Фалкерсона (ФФ) находит $\Omega(C_{max})$ путей. Веса всех рёбер целочисленные.
 +
# Постройте граф, в котором не будет найден максимальный поток. Веса рёбер вещественные.
 +
# Если выбирать путь с максимальным $C_{min}$, то время работы ФФ будет $O(polynom(V, E) \log(C_{max}))$. Докажите это.
 
# Постройте граф, в котором алгоритм Эдмондса-Карпа совершить $\Omega(V E)$ дополнений до пути.
 
# Постройте граф, в котором алгоритм Эдмондса-Карпа совершить $\Omega(V E)$ дополнений до пути.
# Доказать теорему о декомпозиционном барьере. (см. вики-конспекты)
+
# Доказать, что величину потока можно представить в виде $\sum{c_{i}  f_{p_{i}}}$ + $\sum{d_{j} f_{k_{j}}}$ , где $p_i$ - путь из $s$ в $t$, $k_j$ - цикл, $c_i$ и $d_j$ - константы.
 +
# Доказать теорему о декомпозиционном барьере. (см. вики-конспекты)
 +
# Поток назовём циркуляцией, если его величина равна $0$. Рассмотрим граф $G$ такой, что $ \forall uv \in E : L_{uv} \le f_{uv} \le R_{uv} $. Свести поиск допустимой циркуляции к задаче о макс. потоке.
 +
# Пусть есть $k$ истоков и $m$ стоков. Свести задачу к задаче о максимальном потоке.
 +
# Пусть у вершин тоже будет пропускная способность. Свести задачу к задаче о максимальном потоке.
 
# Альтернативная реализация масштабирования потока $-$ на каждом шаге рассматриваем рёбра с пропускной способностью $c \ge 2^{k-i}$. Доказать, что для такой реализации время работы $O(EEk)$.
 
# Альтернативная реализация масштабирования потока $-$ на каждом шаге рассматриваем рёбра с пропускной способностью $c \ge 2^{k-i}$. Доказать, что для такой реализации время работы $O(EEk)$.
 
# $f_{max}$ - макс. поток, $f_{blocking}$ - блокирующий поток. Доказать, что $\frac {|f_{blocking}|} { |f_{max}|} $ может быть сколь угодно мало.
 
# $f_{max}$ - макс. поток, $f_{blocking}$ - блокирующий поток. Доказать, что $\frac {|f_{blocking}|} { |f_{max}|} $ может быть сколь угодно мало.

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)