Редактирование: Список заданий по ДМ 2к 2021 осень

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 46: Строка 46:
 
# Докажите, что для любого $1 \le k \le n - 1$ существует связный граф $G$, содержащий $n$ вершин, такой что диаметр $S_G$ равен $n - k$.
 
# Докажите, что для любого $1 \le k \le n - 1$ существует связный граф $G$, содержащий $n$ вершин, такой что диаметр $S_G$ равен $n - k$.
 
# Докажите, что если в связном графе есть реберно простой цикл длины $k$, то у графа есть не менее $k$ остовных деревьев.
 
# Докажите, что если в связном графе есть реберно простой цикл длины $k$, то у графа есть не менее $k$ остовных деревьев.
# Обобщение формулы Кэли. Пусть дан полный граф, и остовный лес в нём, компоненты связности леса состоят из $c_1, c_2, \ldots, c_k$ вершин. Докажите, что число способов добавить ребра, чтобы получилось остовное дерево, равно $c_1 c_2 \ldots c_k (c_1+c_2+\ldots+c_k)^{k-2}$.
+
# Обобщение формулы Кэли. Пусть дан полный граф из $n$ вершин, и лес в нём, компоненты связности леса имеют размеры $c_1, c_2, \ldots, c_k$. Докажите, что число способов добавить ребра, чтобы получилось дерево, равно $c_1c_2\ldots c_n(c_1+c_2+\ldots+c_n)^{n-2}$.
 
# Для $n \ge 2$, найдите формулу для количества остовных деревьев $K_n$, содержащих ребро $1 - 2$,
 
# Для $n \ge 2$, найдите формулу для количества остовных деревьев $K_n$, содержащих ребро $1 - 2$,
 
# Дан код Прюфера дерева. Найдите степень каждой вершины, не восстанавливая дерево явно.
 
# Дан код Прюфера дерева. Найдите степень каждой вершины, не восстанавливая дерево явно.
# Даны числа $d_1, d_2, \ldots, d_n$. Докажите, что количество деревьев, в которых $deg(1) = d_1$, ..., $deg(n) = d_n$ равно $\frac {(n-2)!} {\prod (d_i - 1)!}$
+
# Даны числа $d_1, d_2, \ldots, d_n$. Докажите, что количество деревьев, в которых $deg(1) = d_1$, ..., $deg(n) = d_n$ равно $\frac {(n-2)!} {\Pi (d_i - 1)!}$
 
# Обобщите матричную теорему Кирхгофа для следующей задачи: дан ориентированный граф и вершина $r$, нужно найти количество корневых деревьев с корнем в $r$.
 
# Обобщите матричную теорему Кирхгофа для следующей задачи: дан ориентированный граф и вершина $r$, нужно найти количество корневых деревьев с корнем в $r$.
 
# Граф называется произвольно вычерчиваемым из вершины $u$, если следующая процедура всегда приводит к эйлеровому циклу: начиная с вершины $u$, переходим каждый раз по любому исходящему из текущей вершины ребру, по которому ранее не проходили. Докажите, что эйлеров граф является произвольно вычерчиваемым из $u$, если любой его простой цикл содержит $u$.
 
# Граф называется произвольно вычерчиваемым из вершины $u$, если следующая процедура всегда приводит к эйлеровому циклу: начиная с вершины $u$, переходим каждый раз по любому исходящему из текущей вершины ребру, по которому ранее не проходили. Докажите, что эйлеров граф является произвольно вычерчиваемым из $u$, если любой его простой цикл содержит $u$.

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)