Редактирование: Список заданий по ДМ 2020 осень

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 157: Строка 157:
 
# Докажите, что число перестановок $n$ элементов, в которых нет возрастающей последовательности длины 3, равно числу Каталана.
 
# Докажите, что число перестановок $n$ элементов, в которых нет возрастающей последовательности длины 3, равно числу Каталана.
 
# Докажите, что число способов расставить числа от 1 до $2n$ в прямоугольник $2 \times n$, чтобы числа в каждой строке и каждом столбце возрастали, равно числу Каталана.
 
# Докажите, что число способов расставить числа от 1 до $2n$ в прямоугольник $2 \times n$, чтобы числа в каждой строке и каждом столбце возрастали, равно числу Каталана.
# Докажите, что число мультимножеств из $n$ чисел от $0$ до $n$, сумма которых делится на $n+1$, равно числу Каталана
+
# Докажите, что число мультимножеств из $n$ чисел от $0$ до $n$, сумма которых делится на $n+1$ равно числу Каталана
# Укажите способ подсчитать число разбиений заданного $n$-элементного множества на $k$ упорядоченных непустых подмножеств (например, для $n = 3$, $k = 2$ есть следующие разбиения: $\{[1], [2, 3]\}$, $\{[1], [3, 2]\}$, $\{[1, 2], [3]\}$, $\{[1, 3], [2]\}$, $\{[2, 1], [3]\}$, $\{[2], [3, 1]\}$.
+
# Укажите способ подсчитать число разбиений заданного $n$-элементного множества на $k$ упорядоченных непустых подмножеств (например, для $n = 3$, $k = 2$ есть следующие разбения: $\{[1], [2, 3]\}$, $\{[1], [3, 2]\}$, $\{[1, 2], [3]\}$, $\{[1, 3], [2]\}$, $\{[2, 1], [3]\}$, $\{[2], [3, 1]\}$.
 
# Подъемом в перестановке называется пара соседних элементов, таких что $a_{i-1} < a_i$. Выведите рекуррентную формулу для числа перестановок $n$ элементов с $k$ подъемами
 
# Подъемом в перестановке называется пара соседних элементов, таких что $a_{i-1} < a_i$. Выведите рекуррентную формулу для числа перестановок $n$ элементов с $k$ подъемами
# Неподвижной точкой в перестановке называется элемент $a_i = i$. Выведите рекуррентную формулу для числа перестановок $n$ элементов с $k$ неподвижными точками. Не пользуйтесь формулой для подсчета беспорядков, придумайте именно рекуррентную формулу.
+
# Неподвижной точкой в перестановке называется элемент $a_i = i$. Выведите рекуррентную формулу для числа перестановок $n$ элементов с $k$ неподвижными точками
 
# Докажите формулу $t^{\overline{n}}=\sum\limits_{k=0}^n\left[n\atop k\right]t^k$
 
# Докажите формулу $t^{\overline{n}}=\sum\limits_{k=0}^n\left[n\atop k\right]t^k$
 
# Докажите формулу $t^n=\sum\limits_{k=0}^n(-1)^{n-k}\left\{n\atop k\right\}t^{\overline k}$
 
# Докажите формулу $t^n=\sum\limits_{k=0}^n(-1)^{n-k}\left\{n\atop k\right\}t^{\overline k}$
Строка 170: Строка 170:
 
# Докажите, что число разбиений числа $n$ на нечетные слагаемые и число разбиений числа $n$ на различные слагаемые совпадает.
 
# Докажите, что число разбиений числа $n$ на нечетные слагаемые и число разбиений числа $n$ на различные слагаемые совпадает.
 
# Для каких $n$ число разбиений $n$ на чётное число различных слагаемых и число разбиений $n$ на нечётное число различных слагаемых различно?
 
# Для каких $n$ число разбиений $n$ на чётное число различных слагаемых и число разбиений $n$ на нечётное число различных слагаемых различно?
# Есть две перестановки: первая меняет местами первые два элемента, а вторая делает циклический сдвиг на один. Покажите, что любую перестановку можно выразить, как композицию этих двух (возможно, используя каждую несколько раз).
 
# В вершинах правильного $n$-угольника записаны числа от $1$ до $n$. Рассмотрим две операции: поворот на угол $2\pi i/n$ и отражение относительно прямой, проходящей через центр многоугольника, после которого вершины оказываются в тех же точках. Докажите, что композиция отражения и поворота является отражением.
 
# В вершинах правильного $n$-угольника записаны числа от $1$ до $n$. Рассмотрим две операции: поворот на угол $2\pi i/n$ и отражение относительно прямой, проходящей через центр многоугольника, после которого вершины оказываются в тех же точках. Докажите, что композиция двух отражений является поворотом.
 
# В вершинах правильного $n$-угольника записаны числа от $1$ до $n$. Рассмотрим две операции: поворот на угол $2\pi i/n$ и отражение относительно прямой, проходящей через центр многоугольника, после которого вершины оказываются в тех же точках. Зафиксируем конкретную прямую, относительно которой можно делать отражение. Докажите, что композиция любой последовательности отражений и поворотов является либо поворотом, либо композицией поворота и отражения относительно зафиксированной прямой.
 
# Выведите формулу для числа ожерелий из $n$ бусинок $k$ цветов с точностью до циклического сдвига и отражения.
 
# Выведите формулу для числа ожерелий из $n$ бусинок 2 цветов с точностью до циклического сдвига, в которых ровно две белые бусины.
 
# Выведите формулу для числа ожерелий из $n$ бусинок 2 цветов с точностью до циклического сдвига, в которых ровно $k$ белых бусин.
 
# Пусть $p$ простое. Найдите число ожерелий из $p^2$ бусинок 2 цветов с точностью до циклического сдвига.
 
# Пусть $p$ и $q$ простые. Найдите число ожерелий из $pq$ бусинок 2 цветов с точностью до циклического сдвига.
 
# Найдите число таких различных булевых функций от 2 переменных, что ни одна из них не может быть получена ни из какой другой навешиванием отрицаний над некоторыми переменными
 
# Найдите число таких различных булевых функций от $n$ переменных, что ни одна из них не может быть получена ни из какой другой навешиванием отрицаний над некоторыми переменными
 
# Выведите формулу для числа раскрасок $n$ шаров в $k$ цветов, порядок не важен.
 
# Выведите формулу для числа раскрасок прямоугольника $n \times m$ в $k$ цветов с точностью до отражения относительно горизонтальной и вертикальной оси.
 
# Выведите формулу для числа раскрасок граней тетраэдра в $k$ цветов с точностью до любого поворота в 3D.
 
# Выведите формулу для числа раскрасок ребер тетраэдра в $k$ цветов с точностью до любого поворота в 3D.
 
# Выведите формулу для числа раскрасок граней куба в $k$ цветов с точностью до любого поворота в 3D.
 
# Выведите формулу для числа раскрасок ребер куба в $k$ цветов с точностью до любого поворота в 3D.
 
# Выведите формулу для числа раскрасок граней октаэдра в $k$ цветов с точностью до любого поворота в 3D.
 
# Почему мы не сделали задачу про вершины тетраэдра, вершины куба, вершины и ребра октаэдра? Неужели оставили на контрольную?
 
# Пусть 3 - множество из трех различных элементов, каждый из которых имеет вес 1. Можно условно называть их красный, синий и зелёный. Что представляет собой $Seq(3)$? Посчитайте число элементов для него, в зависимости от веса.
 
# Что представляет собой $Set(3)$? Посчитайте число элементов для него, в зависимости от веса.
 
# Что представляет собой $MSet(3)$? Посчитайте число элементов для него, в зависимости от веса.
 
# Что представляет собой $Cycle(3)$? Посчитайте число элементов для него, в зависимости от веса.
 
# Пусть $F$ - множество из трёх различных элементов, два из которых имеют вес 1, а один - 2. Можно условно называть их маленький чёрный, маленький белый и большой. Что представляет собой $Seq(F)$? Посчитайте число элементов для него, в зависимости от веса.
 
# Что представляет собой $Set(F)$? Посчитайте число элементов для него, в зависимости от веса.
 
# Что представляет собой $MSet(F)$? Посчитайте число элементов для него, в зависимости от веса.
 
# Постройте множество неотрицательных четных чисел как непомеченный комбинаторный класс (в этом классе должен быть ровно один объект веса 0, 2, 4, ...).
 
# Постройте множество неотрицательных нечетных чисел как непомеченный комбинаторный класс (в этом классе должен быть ровно один объект веса 1, 3, 5, ...).
 
# Пусть $A$ - множество помеченных комбинаторных объектов, известно количество объектов любого веса $a_0$, $a_1$, ... Выведите рекуррентную формулу $c_{n, k}$ для количества объектов веса $n$ в классе $Cycle^k(A)$ (не используя рекуррентную формулу для $Seq^k(A)$).
 
# Пусть $A$ - множество помеченных комбинаторных объектов, известно количество объектов веса 0 $a_0$, веса 1 $a_1$, ... Выведите рекуррентную формулу $b_{n, k}$ для количества объектов веса $n$ в классе $Set^k(A)$ (не используя рекуррентную формулу для $Seq^k(A)$).
 
# Обозначим за $Z$ множество помеченных комбинаторных объектов, содержащее только один элемент веса 1. Используя конструкцию $Set^k(Cycle(Z))$ и предыдущее задание, постройте альтернативную рекуррентную формулу для чисел Стирлинга 1 рода.
 
# Обозначим за $Set^+(A)$ множество непустых множеств, состоящих из элементов класса $A$. Используя конструкцию $Set^k(Set^+(Z))$, постройте альтернативную рекуррентную формулу для чисел Стирлинга 2 рода.
 
# Используя конструкцию $Set(Set^+(Z))$, постройте рекуррентную формулу для чисел Белла.
 
# Пусть $k$ - константа. Постройте отображения $\{1..n\} \to \{1..k\}$ как помеченные комбинаторные объекты. Найдите формулу количества объектов веса $n$.
 
# Сюръекцией называется функция $A \to B$, что для любого $b \in B$ существует $a \in A$, что $f(a) = b$. Пусть $k$ - константа. Постройте сюръекции $\{1..n\} \to \{1..k\}$ как помеченные комбинаторные объекты.
 

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)