Редактирование: Список заданий по теории сложности lite 2021

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 58: Строка 58:
 
# Плохое $e$. Почему в алгоритме RSA нельзя использовать $e=2$?
 
# Плохое $e$. Почему в алгоритме RSA нельзя использовать $e=2$?
 
# Плохое $e$. Петя отправляет сообщение $x$ Алисе, Бобу и Чарли. Они все трое используют RSA с открытым ключом $e=3$ и разными $n_1$, $n_2$ и $n_3$. Помогите злоумышленнику, который перехватил все три зашифрованных сообщения,  восстановить $x$. Сможет ли он восстановить $d_i$?
 
# Плохое $e$. Петя отправляет сообщение $x$ Алисе, Бобу и Чарли. Они все трое используют RSA с открытым ключом $e=3$ и разными $n_1$, $n_2$ и $n_3$. Помогите злоумышленнику, который перехватил все три зашифрованных сообщения,  восстановить $x$. Сможет ли он восстановить $d_i$?
# Переиспользование $n$. Петя отправляет сообщение $x$ Алисе и Бобу. Оба используют RSA с открытыми ключами $e_1$ и $e_2$ ($e_1$ и $e_2$ взаимно просты) и одинаковым $n$. Помогите злоумышленнику, который перехватил оба зашифрованных сообщения, восстановить $x$. Сможет ли он восстановить $d_i$?
+
# Переиспользование $n$. Петя отправляет сообщение $x$ Алисе и Бобу. Оба используют RSA с открытыми ключами $e_1$ и $e_2$ и одинаковым $n$. Помогите злоумышленнику, который перехватил оба зашифрованных сообщения, восстановить $x$. Сможет ли он восстановить $d_i$?
 
# Бросок монеты по телефону. Используя алгоритм слепой цифровой подписи предложите алгоритм, который позволяет Алисе и Бобу подбросить честную монету по телефону. Честная монета у каждого из них есть, в результате общения каждый из них должен иметь одно и то же значение $x$ и его априорное распределение должно быть как у честной монеты.
 
# Бросок монеты по телефону. Используя алгоритм слепой цифровой подписи предложите алгоритм, который позволяет Алисе и Бобу подбросить честную монету по телефону. Честная монета у каждого из них есть, в результате общения каждый из них должен иметь одно и то же значение $x$ и его априорное распределение должно быть как у честной монеты.

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)