Изменения

Перейти к: навигация, поиск
Симметричное стохастическое вложение соседей
Пусть стоит задача вложить множество точек в пространстве высокой размерности <tex>\{x_i \mid x_i \in X\}</tex> в пространство низкой размерности. Обозначим множество точек в пространстве низкой размерности, которые получаются после вложения через <tex>\{y_i \mid y_i \in Y\}</tex>. '''Стохастическое вложение соседей''' (англ. ''Stochastic Neighbor Embedding, SNE'') конвертирует расстояния в Евклидовом пространстве высокой размерности между точками в условные вероятности <tex>p_{j|i}</tex>. <tex>p_{j|i}</tex> {{---}} вероятность, что точка <tex>x_i</tex> выберет в качестве своего соседа точку <tex>x_j</tex> среди остальных точек данных. Будем считать, что вероятность для точки <tex>x_i</tex> найти соседа падает с увеличением расстояния от точки <tex>x_i</tex> в соответствии с распределением Гаусса<ref>[https://ru.wikipedia.org/wiki/Нормальное_распределение Нормальное распределение]</ref> с нулевым [[Математическое ожидание случайной величины|математическим ожиданием]] и [[Дисперсия случайной величины|стандартным отклонением]] <tex>\sigma_i</tex>. В соответствии с этим <tex>p_{j|i}</tex> выражается как
<tex>p_{j|i} = \dfrac{\exp{(-\dfrac{{\left\Vert x_i - x_j \right\Vert}^2/}{2\sigma_i^2})}}{\sum\limits_{k \neq i}\exp{(\dfrac{{-\left\Vert x_i - x_k \right\Vert}^2/}{2\sigma_i^2})}}</tex>.
Теперь определим похожие вероятности <tex>q_{i|j}</tex> для пространства низкой размерности, куда вкладываются точки пространства высокой размерности.
<tex>q_{j|i} = \dfrac{\exp{(-{\left\Vert y_i - y_j \right\Vert}^2)}}{\sum\limits_{k \neq i}\exp{({-\left\Vert x_i y_i - x_k y_k \right\Vert}^2)}}</tex>.
Данные вероятности получаются из тех же самых предложений, что были сделаны для пространства высокой размерности, за исключением того, что все распределения Гаусса имеют стандартное отклонение <tex>\dfrac{1}{\sqrt{2}}</tex> для всех точек.
<tex>KL(P \Vert Q) = \sum\limits_j p_j \log_2 \dfrac{p_j}{q_j}</tex>.
В данном случае имеем <tex>|X|</tex> распределений. Тогда целевую функцию<ref>[https://ru.wikipedia.org/wiki/Целевая_функция Целевая функция]</ref>, который которую будем оптимизировать, определим как сумму соответствующих дивергенций Кульбака-Лейблера. То есть:
<tex>C = \sum\limits_i KL(p_i \Vert q_i) = \sum\limits_i \sum\limits_j p_{j|i} \log_2 \dfrac{p_{j|i}}{q_{j|i}}</tex>.
Таким образом, в симметричном SNE в качестве <tex>p_{i j}</tex> рассматривается следующая величина:
<tex>p_{i j} = \dfrac {p_{i|j} + p_{j|i|j} } {2|X|}</tex>.
Очевидный плюс в том, что <tex>\sum\limits_j p_{i j} > \dfrac 1 {2|X|}</tex> для всех точек, что хорошо скажется на выбросах. А также теперь <tex>p_{i j} = p_{j i}</tex>, <tex>q_{i j} = q_{j i}</tex>.
Анонимный участник

Навигация