Схема Бернулли

Материал из Викиконспекты
Версия от 00:40, 7 марта 2018; Mervap (обсуждение | вклад)
(разн.) ← Предыдущая | Текущая версия (разн.) | Следующая → (разн.)
Перейти к: навигация, поиск
Определение:
Схемой Бернулли (англ. Bernoulli scheme) называется последовательность независимых испытаний, в каждом из которых возможны лишь два исхода — «успех» и «неудача», при этом успех в каждом испытании происходит с одной и той же вероятностью [math] p \in (0, 1)[/math] , а неудача — с вероятностью [math] q = 1 - p [/math].


Распределение Бернулли[править]

Определение:
Распределение Бернулли (англ. Bernoulli distribution) — описывает ситуации, где "испытание" имеет результат "успех" либо "неуспех".

Случайная величина [math]\xi[/math] с таким распределением равна числу успехов в одном испытании схемы Бернулли с вероятностью [math]p[/math] успеха : ни одного успеха или один успех. Функция распределения [math] \xi[/math] имеет вид

[math] F_{\xi}(x) = P(\xi \lt x) \begin{cases} 0, & x\leqslant 0 \\ 1 - p, & 0 \lt x \leqslant 1\\ 1, & x \gt 1 \end{cases} [/math]

Распределение Бернулли.jpg

Биномиальное распределение[править]

Определение:
Случайная величина [math]\xi[/math] имеет биномиальное распределение (англ. binomial distribution) с параметрами [math]n \in \mathbb N[/math] и [math] p \in (0, 1)[/math] и пишут: [math] \xi \in \mathbb B_{n, p}[/math] если [math] \xi[/math] принимает значения [math]k = 0, 1, \ldots ,n[/math] с вероятностями [math]P(\xi = k) = [/math][math] \dbinom{n}{k} \cdot p^k \cdot (1 - p)^{n - k} [/math] .

Случайная величина с таким распределением имеет смысл числа успехов в [math] n [/math] испытаниях схемы Бернулли с вероятностью успеха [math]p[/math].

Таблица распределения [math] \xi [/math] имеет вид

[math]\xi [/math] 0 1 [math]\ldots[/math] [math]k[/math] [math]\ldots[/math] [math]n[/math]
[math]P[/math] [math](1 - p) ^ n [/math] [math]n \cdot p \cdot (1 - p)^{n - 1}[/math] [math]\ldots[/math] [math]\dbinom{n}{k} \cdot p^k \cdot (1 - p)^{n - k} [/math] [math]\ldots[/math] [math] p^n [/math]

Формула Бернулли[править]

Обозначим через [math] v_{n} [/math] число успехов, случившихся в [math] n[/math] испытаниях схемы Бернулли. Эта случайная величина может принимать целые значения от [math]0[/math] до [math]n[/math] в зависимости от результатов испытаний. Например, если все [math]n [/math] испытаний завершились неудачей, то величина [math] v_{n} [/math] равна нулю.

Теорема:
Для любого [math]k = 0, 1, \ldots , n [/math] вероятность получить в [math]n[/math] испытаниях [math]k[/math] успехов равна [math] P(v_{n} = k ) = [/math] [math] \dbinom{n}{k} \cdot p^{k} \cdot q^{n - k}[/math]
Доказательство:
[math]\triangleright[/math]

Событие [math]\{A = v_{n} = k\}[/math] означает, что в [math]n[/math] испытаниях схемы Бернулли произошло ровно [math]k[/math] успехов. Рассмотрим один элементарный исход из события [math]A[/math]: когда первые [math]k[/math] испытаний завершились успехом, остальные неудачей. Поскольку испытания независимы, вероятность такого элементарного исхода равна [math] p ^ {k} \cdot (1-p) ^ {n - k} [/math] Другие элементарные исходы из события [math]A[/math] отличаются лишь расположением [math]k[/math] успехов на [math]n[/math] местах. Есть ровно [math]\dbinom{n}{k}[/math] способов расположить [math]k[/math] успехов на [math]n[/math] местах. Поэтому событие [math]A[/math] состоит из [math]\dbinom{n}{k}[/math] элементарных исходов, вероятность каждого из которых равна [math] p ^ {k} \cdot q ^ {n - k}[/math]

Набор вероятностей в теореме называется биномиальным распределением вероятностей.
[math]\triangleleft[/math]

Геометрическое распределение[править]

Определение:
Геометрическое распределение (англ. geometric distribution) — распределение дискретной случайной величины, равной количеству испытаний случайного эксперимента до наблюдения первого успеха.


Лемма:
Вероятность того, что первый успех произойдёт в испытании с номером [math]k \in \mathbb N = {1, 2, 3, \ldots}[/math] равна [math]P(r = k) = p \cdot q^ {k - 1} [/math]
Доказательство:
[math]\triangleright[/math]
Вероятность первым [math] k - 1 [/math] испытаниям завершиться неудачей, а последнему — успехом, равна [math] P(r = k) = p \cdot q^{k - 1} [/math]
[math]\triangleleft[/math]


Теорема:
Пусть [math] P(r = k) = p \cdot q^{k - 1} [/math] для любого [math] k \in \mathbb N [/math]. Тогда для любых неотрицательных целых [math]n [/math] и [math]k[/math] имеет место равенство: [math] P(r \gt n + k | r \gt n) = P(r \gt k) [/math]
Доказательство:
[math]\triangleright[/math]

По определению условной вероятности, [math] P(r \gt n + k | r \gt n) = [/math] [math] \dfrac{P(r \gt n + k, r \gt n)}{P(r \gt n)} = \dfrac{P(r \gt n + k)}{P(r \gt n)} [/math] [math]\left(1\right)[/math]

Последнее равенство верно в силу того, что событие [math] {r \gt n + k} [/math] влечёт событие [math]{r \gt n}[/math], поэтому их пересечением будет событие [math] {r \gt n + k}[/math]. Найдём для целого [math] m \geqslant 0[/math] вероятность [math] P(r \gt m)[/math] : событие [math] r \gt m [/math] означает,что в схеме Бернулли первые [math]m[/math] испытаний завершились «неудачами», то есть его вероятность равна [math] q^{m}[/math]. Возвращаясь к формуле [math]\left(1\right)[/math] получаем, что эта случайная величина равна [math] P(r \gt n + k | r \gt n) = [/math] [math] \dfrac{P(r \gt n + k, r \gt n)}{P(r \gt n)} = \dfrac{q^{n + k}} {q^{n}} =[/math] [math] q^{k} = P(r \gt k)[/math].
[math]\triangleleft[/math]

Обобщение (полиномиальная схема)[править]

Обычная формула Бернулли применима на случай когда при каждом испытании возможно одно из двух исходов. Рассмотрим случай, когда в одном испытании возможны [math] m[/math] исходов: [math]1, 2, \ldots , m,[/math] и [math]i[/math]-й исход в одном испытании случается с вероятностью [math] p_{i}[/math] , где [math]p_{1} + \ldots + p_{m} = 1[/math].

Теорема:
Обозначим через [math]P(n_{1}, \ldots , n_{m})[/math] вероятность того, что в [math]n[/math] независимых испытаниях первый исход случится [math] n_{1}[/math] раз, второй исход — [math]n_{2}[/math] раз, и так далее, наконец, [math]m[/math]-й исход — [math]n_{m}[/math] раз тогда верна формула: [math] P(n_{1}, \ldots , n_{m}) = [/math] [math] \dfrac{n!}{n_{1}! \cdot n_{2}! \cdot\ldots \cdot n_{m}!} \cdot {p_{1}}^{n_{1}} \cdot \ldots \cdot {p_{m}}^{n_{m}} [/math]
Доказательство:
[math]\triangleright[/math]

Рассмотрим один элементарный исход, благоприятствующий выпадению [math]n_{1}[/math] единиц, [math] n_{2}[/math] двоек, и так далее. Это результат [math]n[/math] экспериментов, когда все нужные исходы появились в некотором заранее заданном порядке. Вероятность такого результата равна произведению вероятностей [math]p_{n_{1}} \ldots p_{n_{m}}[/math]. Остальные благоприятные исходы отличаются лишь расположением чисел [math]1, 2, \ldots , m[/math] на [math]n[/math] местах. Число таких исходов равно числу способов расположить на [math]n[/math] местах [math]n_{1}[/math] единиц, [math]n_{2}[/math] двоек,и так далее Это число равно

[math]\dbinom{n}{n_1} \cdot\dbinom{n - n_1 - n_2}{n_2} \cdot \dbinom{n - n_1 - n_2- n_3}{n_3} \cdot\ldots \cdot \dbinom{n - n_1 - n_2 - \ldots - n_{m -1}}{n_m} = \dfrac {n!}{n_{1}! \cdot n_{2}! \cdot \ldots \cdot n_{m}!} [/math]
[math]\triangleleft[/math]

Примеры[править]

Правильная монета[править]

Правильная монета подбрасывается [math]10[/math] раз. Найти вероятность того, что герб выпадет от [math]4[/math] до [math]6[/math] раз.

Вычислим отдельно вероятности получить [math]4, 5[/math] и [math]6[/math] гербов после десяти подбрасываний монеты.

[math]P(v_{10} = 4) =[/math] [math] \dbinom{10}{4} \cdot\left(\dfrac{1}{2}\right)^ {4} \cdot \left(\dfrac{1}{2}\right)^ {10 - 4} [/math] [math]~\approx ~ 0{.}205 [/math]

[math]P(v_{10} = 5) = [/math] [math]\dbinom{10}{5} \cdot \left(\dfrac{1}{2}\right)^ {5} \cdot \left(\dfrac{1}{2}\right)^ {10 - 5}[/math][math]~\approx ~ 0{.}246 [/math]

[math]P(v_{10} = 6) =[/math] [math] \dbinom{10}{6} \cdot \left(\dfrac{1}{2}\right)^ {6} \cdot \left(\dfrac{1}{2}\right)^ {10 - 6}[/math] [math]~\approx ~ 0{.}205 [/math]

Сложим вероятности несовместных событий: [math]P(4 \leqslant v_{10} \leqslant 6) = P(v_{10} = 4) + P(v_{10} = 5) + P(v_{10} = 6) ~\approx ~ 0{.}656 [/math]

Правильная игральная кость с двумя исходами[править]

Два игрока по очереди подбрасывают правильную игральную кость. Выигрывает тот, кто первым выкинет шесть очков. Найти вероятность победы игрока, начинающего игру.

Шесть очков может впервые выпасть при первом, втором, и так далее. бросках кости. Первый игрок побеждает, если это случится при броске с нечётным номером, второй — с чётным. Пусть событие [math] A_{k} [/math] состоит в том, что шесть очков впервые выпадет в испытании с номером [math]k[/math]. По лемме, [math] P(A_{k}) =[/math] [math]\dfrac{1}{6} \cdot \left(\dfrac{5}{6}\right)^{k - 1} [/math] События [math]A , B[/math], означающие победу первого и второго игроков соответственно, представимы в виде объединения взаимоисключающих событий: [math] A = A_{1} \cup A_{3} \cup A_{5} \cup \ldots , B = B_{2}\cup B_{4} \cup B_{6} \cup \ldots [/math] Вероятности этих объединений равны суммам вероятностей слагаемых:

[math] P(A) =[/math][math] \dfrac{1}{6} + \dfrac{1}{6} \cdot \left(\dfrac{5}{6}\right)^{2} + \dfrac{1}{6} \cdot\left(\dfrac{5}{6}\right)^{4} \ldots = \dfrac{6}{11}.[/math] Теперь аналогичным образом посчитаю вероятность для события [math]B[/math]

[math] P(B) =[/math] [math] \dfrac{1}{6} \cdot \dfrac{5}{6} + \dfrac{1}{6} \cdot \left(\dfrac{5}{6}\right)^{3} + \dfrac{1}{6} \cdot\left(\dfrac{5}{6}\right)^{5} \ldots = \dfrac{5}{11}. [/math]

Правильная игральная кость с тремя исходами[править]

Игральная кость подбрасывается пятнадцать раз. Найти вероятность того, что выпадет ровно десять троек и три единицы. Здесь каждое испытание имеет три, а не два исхода: выпадение тройки, выпадение единицы, выпадение любой другой грани.

Так как вероятности выпадения тройки и единицы равны по [math]\dfrac{1}{6}[/math], а вероятность третьего исхода (выпала любая другая грань) [math]\dfrac{4}{6}[/math], то вероятность получить десять троек, три единицы и ещё два других очка равна

[math] P(10, 3, 2) = [/math] [math] \dfrac{15!}{10! \cdot 3! \cdot2!} \cdot \left(\dfrac{1}{6}\right)^{10} \cdot \left(\dfrac{1}{6}\right)^{3} \cdot \left(\dfrac{4}{6}\right)^{2} [/math]

См. также[править]

Источники информации[править]