Изменения

Перейти к: навигация, поиск

Сходимость цепных дробей

27 байт добавлено, 19:09, 6 июля 2010
Нет описания правки
Последовательность из подходящих дробей для <tex>\langle a_0, a_1,\cdots\rangle</tex>, где <tex>a_0\in\mathbb{Z}; a_i\in\mathbb{N}, i>0</tex>, имеет предел.
|proof=
Возьмём нечётное <tex>n</tex>. Для него верно <tex>P_nQ_{n-1}-P_{n-1}Q_n =(-1)^{n+1}=1>0</tex>. Тогда <tex>\frac{P_n}{Q_n}>\frac{P_{n-1}}{Q_{n-1}}</tex>. Аналогично <tex>\frac{P_n}{Q_n}>\frac{P_{n+1}}{Q_{n+1}}</tex>. Также верно, что <tex>\frac{P_n}{Q_n}-\frac{P_{n-1}}{Q_{n-1}}=\frac{1}{Q_{n-1}Q_n}</tex> и <tex>\frac{P_n}{Q_n}-\frac{P_{n+1}}{Q_{n+1}}=\frac{1}{Q_{n+1}Q_n}</tex>. Вычитая одно из другого получаем <tex>\frac{P_{n+1}}{Q_{n+1}}-\frac{P_{n-1}}{Q_{n-1}}=\frac{Q_{n+1}-Q_{n-1}}{Q_{n-1}Q_nQ_{n+1}}>0</tex>. Получаем, что последовательность из подходящих дробей с чётным номером возрастает. Аналогично последовательность из подходящих дробей с нечётным номером убывает. Следовательно последовательность подходящих дробей с чётным номером ограничена сверху, а с нечётным ограничена снизу. Значит они имеют предел. Но <tex>P_nQ_\frac{P_n}{Q_n}-\frac{P_{n-1}-P_}{Q_{n-1}Q_n }=(-\frac{1)^}{Q_{n+-1}=Q_n}\rightarrow 0</tex>, значит этот предел совпадает.
}}
Анонимный участник

Навигация