Редактирование: Теорема Бермана — Форчуна

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 45: Строка 45:
 
Так как <tex>\mathrm{TAUT} \in \mathrm{coNPC}</tex> и <tex>S \in \mathrm{coNPC}</tex>, то <tex>\mathrm{TAUT} \le S</tex>, то есть <tex>\exists f \in \mathrm{\widetilde{P}} : \phi \in \mathrm{TAUT} \Leftrightarrow f(\phi) \in S</tex>. Поэтому, если в предыдущей программе заменить все обращения к <tex>memo[\phi]</tex>, на <tex>memo[f(\phi)]</tex>, то полученная программа по-прежнему будет разрешать <tex>\mathrm{TAUT}</tex>.
 
Так как <tex>\mathrm{TAUT} \in \mathrm{coNPC}</tex> и <tex>S \in \mathrm{coNPC}</tex>, то <tex>\mathrm{TAUT} \le S</tex>, то есть <tex>\exists f \in \mathrm{\widetilde{P}} : \phi \in \mathrm{TAUT} \Leftrightarrow f(\phi) \in S</tex>. Поэтому, если в предыдущей программе заменить все обращения к <tex>memo[\phi]</tex>, на <tex>memo[f(\phi)]</tex>, то полученная программа по-прежнему будет разрешать <tex>\mathrm{TAUT}</tex>.
  
Оценим необходимый размер <tex>memo</tex>. Можно считать, что <tex>\mathrm{T}(f, \phi) \le q(n)</tex>, где <tex>n = |\phi|</tex>, а <tex>q</tex> {{---}} монотонно возрастающий полином. Тогда <tex>|f(\phi)| \le q(n)</tex>. Так как <tex>S \in \mathrm{SPARSE}</tex>, то <tex>|S \cap \Sigma^k| \le p(k)</tex>, где <tex>p</tex> {{---}} полином. Можно считать, что <tex>p</tex> монотонно возрастает. Тогда размер <tex>memo</tex> (число слов длины не более <tex>q(n)</tex> в языке) можно оценить сверху: <tex>memo.size() \le \sum\limits_{i=0}^{q(n)}p(i) \le (1+q(n)) \cdot p(q(n)) \le r(n)</tex>, где <tex>r(n)</tex> {{---}} полином.
+
Оценим необходимый размер <tex>memo</tex>. Можно считать, что <tex>\mathrm{T}(f, \phi) \le q(n)</tex>, где <tex>n = |\phi|</tex>, а <tex>q</tex> {{---}} монотонно возрастающий полином. Тогда <tex>|f(\phi)| \le q(n)</tex>. Так как <tex>S \in \mathrm{SPARSE}</tex>, то <tex>|S \cap \Sigma^k| \le p(k)</tex>, где <tex>p</tex> {{---}} полином. Можно считать, что <tex>p</tex> монотонно возрастает. Тогда размер <tex>memo</tex> можно оценить сверху: <tex>memo.size() \le \sum\limits_{i=0}^{q(n)}p(i) \le (1+q(n)) \cdot p(q(n)) \le r(n)</tex>, где <tex>r(n)</tex> {{---}} полином.
 
  <tex>check(\phi, i)</tex>:
 
  <tex>check(\phi, i)</tex>:
 
     '''if''' <tex>\phi=0</tex>
 
     '''if''' <tex>\phi=0</tex>

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)