Редактирование: Теорема Джексона

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 13: Строка 13:
 
<tex> \omega(f, h)_C </tex> — [[модуль непрерывности функции]] <tex> = \sup\limits_{|t| \le h} \| f(\cdot + t) - f(\cdot) \|_C = \sup\limits_{|x_2 - x_1| \le h} |f(x_2) - f(x_1)| </tex>
 
<tex> \omega(f, h)_C </tex> — [[модуль непрерывности функции]] <tex> = \sup\limits_{|t| \le h} \| f(\cdot + t) - f(\cdot) \|_C = \sup\limits_{|x_2 - x_1| \le h} |f(x_2) - f(x_1)| </tex>
  
[[Наилучшее приближение в линейных нормированных пространствах | Ранее]] было установлено, что <tex> E_n(f)_C \xrightarrow[n \to \infty]{} 0 </tex>.
+
<tex> E_n(f)_C \xrightarrow[n \to \infty]{} 0 </tex>.
  
 
Группу теорем, которая позволяет судить о скорости стремления наилучшего приближения к нулю называют «прямыми теоремами теории аппроксимации функций (конструктивной теории функций)». Одной из характеристик, которой описывают структурные свойства фунции, является модуль непрерывности.
 
Группу теорем, которая позволяет судить о скорости стремления наилучшего приближения к нулю называют «прямыми теоремами теории аппроксимации функций (конструктивной теории функций)». Одной из характеристик, которой описывают структурные свойства фунции, является модуль непрерывности.

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)