Теорема Карпа — Липтона

Материал из Викиконспекты
Перейти к: навигация, поиск
Лемма:
Пусть [math]SAT \in P/poly [/math], тогда существует семейство схем полиномиального размера [math]D_n[/math], таких, что для любой формулы [math]\phi \in SAT[/math], [math]D_{|\phi|}(\phi)[/math] выводит набор значений, удовлетворяющий формуле.
Доказательство:
[math]\triangleright[/math]

Если [math]\phi[/math] не содержит переменных, то есть является тождественной единицей, решение задачи тривиально.

Иначе, выберем любую переменную [math]x[/math] из формулы [math]\phi[/math], и выполним подстановку [math]x = 0[/math]. Получим формулу [math]\phi_0[/math]. Если [math]\phi_0 \in SAT[/math] (так как по условию теоремы [math]SAT \in P/poly[/math], такую проверку можно сделать за полиномиальное время, вычислив соответствующую схему), то мы свели задачу к аналогичной с меньшим числом переменных. В противном случае, сведение выполняется подстановкой [math]x = 1[/math]. Мы получили программу, работающую за полиномиальное время, а так как [math]P \in P/poly[/math], то и семейство требуемых схем.
[math]\triangleleft[/math]


Теорема (Карп, Липтон):
Если [math]NP \subset P/poly[/math], то [math]\Sigma_2 = \Pi_2[/math].
Доказательство:
[math]\triangleright[/math]

Так как [math]NP \subset P/poly[/math], то [math]\mathrm{SAT} \in \mathrm{P/poly}[/math], то есть для любого [math]n[/math] найдётся схема полиномиального размера [math] C_n[/math], такая что [math]C_{|\phi|}(\phi) = \left[\phi \in SAT\right][/math]. Тогда, найдётся и схема полиномиального размера [math] D_{|\phi|}[/math], выдающая для [math]\phi \in SAT[/math] набор значений, удовлетворяющий [math]\phi[/math].

Рассмотрим язык [math]L \in \Pi_2[/math], [math]L = \{z | \forall x [/math] [math]\exists y [/math] [math] \phi(x, y, z)\}[/math].
Рассмотрим формулу [math]\psi(x, z) = \exists y[/math] [math]\phi(x, y, z)[/math] как экземпляр задачи [math]SAT[/math].
Тогда определение языка [math]L[/math] можно переписать так: [math]L=\{z | \forall x[/math] [math] \phi(x,D_{|\psi(x, z)|}(\psi(x, z)), z)\}[/math].
Покажем что [math](\forall x[/math] [math] \phi(x,D_{|\psi(x, z)|}(\psi(x, z)), z)[/math] [math])\Leftrightarrow[/math] [math](\exists G : [/math] [math] \forall x[/math] [math]\phi(x, G(\psi(x, z)), z))[/math].
Очевидно, из первого следует второе, так как [math]\exists G = D_{|\psi(x, z)|}[/math]. Если первое ложно, то [math]\exists x = x_0 : [/math] [math]\forall y[/math] [math]\phi(x, y, z) = 0[/math], а значит [math]\forall G [/math] [math]\exists x = x_0 : \phi (x, G(\psi(x, z)), z)[/math], то есть второе ложно.

Итого, язык [math]L=\{z | \exists G : [/math] [math]\forall x[/math] [math]\phi(x, G(\psi(x, z)), z)\}[/math], значит [math]L \in \Sigma_2[/math].
[math]\triangleleft[/math]