Теорема Карпа — Липтона

Материал из Викиконспекты
Версия от 08:27, 6 июня 2012; Kirillova (обсуждение | вклад) (исправлена теорема)
Перейти к: навигация, поиск
Лемма:
Пусть [math]\mathrm{SAT} \in \mathrm{P}/poly [/math]. Тогда существует такое семейство схем полиномиального размера, что для любой входной функции [math]\phi[/math] возвращается последовательность бит, удовлетворяющая [math]\phi[/math], если она существует, или же последовательность нулей в другом случае.
Доказательство:
[math]\triangleright[/math]

Пусть нам дана функция [math]\phi[/math] с [math]n[/math] переменными.
Определим схемы [math]C_n^1, \ldots, C_n^n[/math] следующим образом:

  • [math]C_n^1(\phi) = 1 \Leftrightarrow \exists x_2,\ldots, x_n: \phi(1,x_2, \ldots, x_n)=1[/math];
  • [math] \ldots [/math]
  • [math]C_n^i(\phi, b_1, \ldots, b_{i-1}) = 1 \Leftrightarrow \exists x_{i+1},\ldots, x_n: \phi(b_1, \ldots, b_{i-1},1,x_{i+1}, \ldots, x_n)=1[/math];
  • [math] \ldots [/math]
  • [math]C_n^n(\phi, b_1, \ldots, b_{n - 1}) = 1 \Leftrightarrow \phi(b_1, \ldots, b_{n-1}, 1)=1[/math].
Задача определения возврщаемого значения таких схем — задача [math]\mathrm{SAT}[/math]. По условию [math]\mathrm{SAT} \in \mathrm{P}/poly [/math], следовательно, такие схемы существуют и каждая из них будет полиномиального размера. Рассмотрим последовательность: [math]b_1=C_n^1(\phi), b_2=C_n^2(\phi, b1), \ldots, b_n=C_n^n(\phi, b_1, \ldots, b_{n-1})[/math]. Очевидно, что это будет последовательностью бит, которая удовлетворит [math]\phi[/math], или же последовательностью нулей, если [math]\phi[/math] удовлетворить нельзя, ее и нужно вернуть. В итоге мы получили схему полиномиального размера [math]C_n(\phi)[/math].
[math]\triangleleft[/math]


Теорема (Карп, Липтон):
Если [math]\mathrm{NP} \subset \mathrm{P}/poly[/math], то [math]\Sigma_2 = \Pi_2[/math].
Доказательство:
[math]\triangleright[/math]

Рассмотрим язык [math]L \in \mathrm{\Pi_2}[/math], [math]L = \{x \bigm| \forall y \ \exists z \ \phi(x, y, z)\}[/math].
[math]\phi[/math] можно рассмтривать как функцию с [math]n[/math] битовыми переменныии, где [math]n[/math] — полином от длины входа (из-за ограничений накладываемых по определению класса [math]\mathrm{\Pi_2}[/math] на [math]|y|, |z|)[/math]. Для заданных [math]x[/math] и [math]y[/math] найдем такой [math]z[/math], что [math]\phi(x,y,z)=1[/math], если это возможно. Подставим значения [math]x[/math] и [math]y[/math] в функцию [math]\phi[/math]. Теперь [math]\phi[/math] зависит только от [math]z[/math]: [math]\phi_{xy}(z)[/math]. Из предыдущей леммы мы получили семейство схем полиномиального размера [math]C_1, \ldots, C_n, \ldots [/math] Запустим схему [math]C_m[/math] на [math]\phi_{xy}[/math], где [math]m=n-|x|-|y|[/math]. Эта схема вернет нам такое значение [math]z[/math], что [math]\phi(x,y,z)=1[/math], если [math]\phi(x,y,z)[/math] удовлетворима для заданных [math]x[/math] и [math]y[/math], или же последовательность нулей.
Тогда определение языка [math]L[/math] можно переписать: [math]L = \{x \bigm| \forall y \ \phi(x, y, C_m(\phi_{xy}))\}[/math].
Рассмотрим язык [math]L_1 = \{x\bigm|\exists G \ \forall y \ \phi(x, y, G(x, y , \phi_{xy}))\}[/math].
Покажем, что [math]L=L_1[/math]:

  • [math] L \subset L_1[/math]

Очевидно. Можно за [math]G[/math] взять [math]C_m[/math].

  • [math]L_1 \subset L[/math]

Мы докажем это утверждение, если покажем, что если какое-то слово не принадлежит [math]L[/math], то оно не принадлежит и [math]L_1[/math].
Пусть [math]\exists y \ \forall z \ \phi(x,y,z)=0 \Rightarrow \nexists G \ \forall y \ \phi(x, y, G(\phi_{xy}))=1[/math] — очевидно.

Таким образом [math]L =\{x\bigm|\exists G, |G| \lt p(|x|) \ \forall y, |y|\lt p(|x|) \ \phi(x, y, G(x, y , \phi_{xy}))\}[/math]. Следовательно, [math]L \in \Sigma_2[/math].
[math]\triangleleft[/math]