Изменения

Перейти к: навигация, поиск

Теорема Кэли

5923 байта добавлено, 19:35, 4 сентября 2022
м
rollbackEdits.php mass rollback
== __TOC__ Теорема Кэли ==В теории групп '''теорема Кэли''' (''Cayley's theorem'') утверждает, что любая конечная группа изоморфна некоторой подгруппе позволяет найти для любой конечной группы с определённой бинарной операцией изоморфную ей подгруппу группы всех перестановок (называемой также симметрической группой).== Формулировка и доказательство критерия Теорема Кэли==
{{
Теорема|author=Кэли(''Cayley'')|about=о вложении любой конечной группы в группу перестановок|statement=Любая [[Конечная группа| конечная группа ]] <tex>G</tex> порядка <tex>n</tex> изоморфна некоторой подгруппе [[Умножение перестановок, обратная перестановка, группа перестановок|группы перестановок]] (подгруппе симметрической группегруппы <tex>S_n</tex>).
|proof=
<tex>S_n</tex>(симметрическая группа) {{---}} множество перестановок с <tex>n</tex> элементами с операцией <tex>\circ</tex>.
 
Пусть <tex>\circ</tex> {{---}} бинарная операция в конечной группе <tex>G=\{g_1, g_2,\ldots,g_n\}</tex>.
Для каждого элемента <tex>g\in G</tex> построим соответствующую перестановку <tex>f_g\in S_n:</tex>
<tex> f_g=\begin{bmatrix} g_1 & g_2 & \ldots & g_n \\ f_g(g_1) & f_g(g_2) & \ldots & f_g(g_n) \end{bmatrix},</tex> где <tex>f_g(x) = g \circ x</tex>.
 
<tex>f_g</tex> {{---}} перестановка, так как
 
# Для любых <tex>a, b\in G</tex> таких, что <tex>a \neq b</tex> верно, что <tex>g \circ a \neq g \circ b</tex> <tex>\Rightarrow f_g</tex> {{---}} инъекция.
# Мощность <tex>G</tex> {{---}} конечна <tex>\Rightarrow f_g</tex> {{---}} биективно, и является перестановкой.
 
Пусть <tex>\circ</tex> {{---}} композиция двух перестановок.
Если <tex>f_g</tex> {{---}} перестановка, то <tex>f_{g^{-1}}</tex> {{---}} обратная перестановка, где <tex>g^{-1}</tex> {{---}} обратный элемент <tex>g</tex>, так как <tex> (f_{g^{-1}} \circ f_g) (x) = f_{g^{-1}}(f_g (x)) =g^{-1} \circ g \circ x = x </tex>.
Если <tex>e</tex> {{---}} нейтральный элемент в группе, то <tex>f_e</tex> {{---}} тождественная перестановка.
 
Докажем,что множество всех перестановок <tex>K = \{f_g : g \in G\}</tex> {{---}} подгруппа симметрической группы <tex>S_n</tex>.
 
Пусть <tex>g_i,g_j\in G</tex>.Рассмотрим перестановку <tex>(f_{g_i} \circ f_{g_j})(x)</tex>. Так как <tex>G</tex> {{---}} группа, то для любого <tex>x\in G</tex> верно
 
<tex>(f_{g_i} \circ f_{g_j})(x) = f_{g_i}(f_{g_j}(x)) = {g_i} \circ {g_j} \circ x = f_{g_i \circ g_j}(x) = f_c(x) </tex>,
 
Так как <tex>G</tex> {{---}} группа, то <tex>g_i \circ g_j =g_k\in G</tex> и <tex>f_{g_i \circ g_j}=f_{g_k}</tex>, откуда <tex>f_{g_i} \circ f_{g_j}\in K</tex>. Значит, <tex>K</tex> {{---}} подгруппа группы <tex>S_n</tex>.
Осталось доказать, что <tex>G</tex> и <tex>K</tex> изоморфны. Для этого рассмотрим отображение <tex>\varphi : G \rightarrow K\</tex>, которое переводит элемент <tex>g\in G</tex> в элемент <tex>\varphi(g)=f_{g^\prime}\in K</tex>, где <tex>{g^\prime}</tex> симметричен элементу <tex>g</tex> в группе <tex>G</tex>.
TBDЗаметим, что #Отображение <tex>\varphi </tex> взаимно однозначно.#Для любых <tex>g_i,g_j\in G</tex> верно <tex>\varphi (g_i \circ g_j) = f_{(g_i \circ g_j)^\prime} = f_{{g}^\prime_i \circ {g}^\prime_j}=f_{{g}^\prime_i}\circ f_{{g}^\prime_j}=\varphi (g_i)\circ \varphi (g_j)</tex>, то есть отображение <tex>\varphi</tex> сохраняет операцию.
Значит, оно является изоморфизмом групп <tex>G</tex> и <tex>K</tex>.
}}
 
==Примеры==
Рассмотрим конечную группу <tex>G= \mathbb Z_3=\{0, 1, 2\}</tex> с операцией <tex>\circ </tex> {{---}} сложения по модулю <tex>3</tex>. Найдём подгруппу <tex>K</tex>, изоморфную группе <tex>\mathbb{Z}_3</tex>, то есть найдём отображение <tex>\mathbb{Z}_3</tex> в <tex>K</tex>.
 
Пусть <tex>\ \varphi :\mathbb{Z}_3\rightarrow K</tex>
 
<tex>K = \{\varphi(g) : g \in \mathbb{Z}_3\}</tex> и
 
<tex> \varphi(g)=\begin{bmatrix} 0 & 1 & 2 \\ f_g(0) & f_g(1) & f_g(2) \end{bmatrix},</tex> где <tex> f_g(x) = g \circ x</tex>.
 
При этом <tex>K\subseteq S_3</tex>, где <tex>S_3</tex> {{---}} группа всех перестановок с <tex>3</tex> элементами с операцией <tex>\circ</tex>.
 
То есть
 
<tex> \varphi(g)=\begin{bmatrix} 0 & 1 & 2 \\ g\circ 0 & g\circ 1 & g\circ 2 \end{bmatrix}</tex>.
 
Тогда находим три перестановки, составляющие группу <tex>K</tex>:
 
<tex> \varphi(0)=\begin{bmatrix} 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix} </tex>
 
<tex> \varphi(1)=\begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 0 \end{bmatrix} </tex>
 
<tex> \varphi(2)=\begin{bmatrix} 0 & 1 & 2 \\ 2 & 0 & 1 \end{bmatrix} </tex>
 
Таким образом, мы нашли подгруппу <tex>K</tex> группы перестановок <tex>S_3</tex>, изоморфную конечной группе <tex>\mathbb{Z}_3</tex>.
 
==См. также==
* [[Умножение перестановок, обратная перестановка, группа перестановок]]
* [[Действие перестановки на набор из элементов, представление в виде циклов]]
* [[Таблица инверсий]]
* [[Матричное представление перестановок]]
 
==Источники информации==
* [http://en.wikipedia.org/wiki/Cayley's_theorem Wikipedia {{---}} Cayley's theorem]
 
[[Категория: Дискретная математика и алгоритмы]]
[[Категория: Комбинаторика]]
[[Категория: Свойства комбинаторных объектов]]
1632
правки

Навигация