Теорема Холла — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Теорема)
(Теорема)
Строка 24: Строка 24:
 
*В обратную сторону докажем по индукции(будем добавлять вершину <tex>x</tex> из <tex>L</tex> в <tex>L'</tex> и доказывать что в L' есть паросочетание, насыщающее все вершины из L'). Таким образом, в конце получим что в <tex>G'</tex> совпадает с <tex>G</tex>. Из этого будет следовать существование в <tex>G</tex>  
 
*В обратную сторону докажем по индукции(будем добавлять вершину <tex>x</tex> из <tex>L</tex> в <tex>L'</tex> и доказывать что в L' есть паросочетание, насыщающее все вершины из L'). Таким образом, в конце получим что в <tex>G'</tex> совпадает с <tex>G</tex>. Из этого будет следовать существование в <tex>G</tex>  
 
#База: Одна вершина соединена хотя бы с одной вершиной из R. Следовательно база верна.
 
#База: Одна вершина соединена хотя бы с одной вершиной из R. Следовательно база верна.
#Переход: Пусть после k добавлений в G' можно построить паросочетание P, насыщающее все вершины из L'. Докажем что после добавления вершины x в G' будет существовать паросочетание насыщающее все вершины L'. Рассмотрим L' + x. Рассмотрим все вершины достижимые из x в G', если можно ходить  из R' в L' только по ребрам P, а из L' в R' по любым ребрам из G'.   
+
#Переход: Пусть после k добавлений в G' можно построить паросочетание P, насыщающее все вершины из L'. Докажем что после добавления вершины x в G' будет существовать паросочетание насыщающее все вершины L'. Рассмотрим L' + x. Рассмотрим все вершины достижимые из x в G', если можно ходить  из R' в L' только по ребрам P, а из L' в R' по любым ребрам из G'. Для этого множества должно выполнятся условие  
  
 
}}
 
}}

Версия 22:22, 22 декабря 2012

Определения

Пусть [math]G(V,E)[/math] - двудольный граф. [math]L[/math] - множество вершин первой доли. [math]R[/math] - множество вершин правой доли.

Определение:
Полным(совершенным) паросочетанием называется паросочетание в которое входят все вершины.


Определение:
Пусть [math]X \subset V [/math]. Множeство соседей [math]X[/math] определим формулой: [math]N(X)= \{ y \in V: (x,y) \in E \}[/math]


Теорема

Теорема (Холл):
Полное паросочетание существует тогда и только тогда, когда для любого [math]A \subset L [/math] выполнено [math]|A| \leq |N(A)|[/math].
Доказательство:
[math]\triangleright[/math]
  • Очевидно, что если существует полное паросочетание, то для любого [math]A \subset L [/math] выполнено [math]|A| \leq |N(A)|[/math]. У любого подмножества вершин есть по крайней мере столько же "соседей"("соседи по парасочетанию").

Пусть граф [math]G'[/math] изначально имеет левую долю [math]L'[/math], которая содержит одну любую вершину из L, и правую [math]R' = R[/math]

  • В обратную сторону докажем по индукции(будем добавлять вершину [math]x[/math] из [math]L[/math] в [math]L'[/math] и доказывать что в L' есть паросочетание, насыщающее все вершины из L'). Таким образом, в конце получим что в [math]G'[/math] совпадает с [math]G[/math]. Из этого будет следовать существование в [math]G[/math]
  1. База: Одна вершина соединена хотя бы с одной вершиной из R. Следовательно база верна.
  2. Переход: Пусть после k добавлений в G' можно построить паросочетание P, насыщающее все вершины из L'. Докажем что после добавления вершины x в G' будет существовать паросочетание насыщающее все вершины L'. Рассмотрим L' + x. Рассмотрим все вершины достижимые из x в G', если можно ходить из R' в L' только по ребрам P, а из L' в R' по любым ребрам из G'. Для этого множества должно выполнятся условие
[math]\triangleleft[/math]

Ссылки

Смотри также