Теорема о существовании простого цикла в случае существования цикла — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м
 
(не показано 16 промежуточных версий 6 участников)
Строка 1: Строка 1:
{{В разработке}}
 
 
 
{{Лемма
 
{{Лемма
|statement=Наличие двух различных рёберно-простых путей между какими-либо двумя вершинами графа <tex>G</tex> равносильно наличию цикла в этом графе.
+
|statement=Наличие двух различных рёберно простых путей между какими-либо двумя вершинами неориентированного [[Основные определения теории графов|графа]] <tex>G</tex> равносильно наличию цикла в этом графе.
 
|proof=
 
|proof=
"<tex>\Rightarrow</tex>"
+
<tex>\Rightarrow</tex>
  
Предположим, что в графе <tex>G</tex> существует два различных реберно-простых пути между вершинами <tex>u</tex> и <tex>v</tex>. Пусть это будут пути <tex>p = u e_1 v_1\ldots v_{n-1} e_n v</tex> и <tex>p' = u e'_1 v'_1\ldots v'_{n-1} e'_n v</tex>. Пусть их наибольший общий префикс заканчивается в вершине <tex>w = v_k = v'_l</tex>. Заметим, что <tex>w \neq v</tex>, т. к. пути различны. Рассмотрим суффиксы путей <tex>p</tex> и <tex>p'</tex>: <tex>s = w e_{k+1} \ldots  v</tex> и <tex>s' = w e'_{l+1} \ldots v</tex> соответственно. Найдем первую совпадающую вершину  <tex>w'</tex> в <tex>s</tex> и <tex>s'</tex>, не равную <tex>w</tex>. Осталось заметить, что замкнутый путь <tex>c</tex>, полученный объединением <tex>w \rightarrow w'</tex> части пути <tex>s</tex> вместе с   <tex>w' \rightarrow w</tex> частью цепи <tex>s'</tex> является циклическим путем. Действительно, т. r. в  путях <tex>s</tex> и <tex>s'</tex> двух ребер подряд не бывает, т.к. это реберно простые пути, а ребра, смежные с <tex>w</tex> и <tex>w'</tex> не совпадают по построению. Циклический путь <tex>c</tex> является представителем некоторого цикла в графе <tex>G</tex>.
+
Предположим, что в графе <tex>G</tex> существует два различных рёберно простых пути между вершинами <tex>u</tex> и <tex>v</tex>. Пусть это будут пути <tex>p = u e_1 v_1\ldots v_{n-1} e_n v</tex> и <tex>p' = u e'_1 v'_1\ldots v'_{n-1} e'_n v</tex>. Пусть их наибольший общий префикс заканчивается в вершине <tex>w = v_k = v'_k</tex>. Заметим, что <tex>w \neq v</tex>, т.к. пути различны. Рассмотрим суффиксы путей <tex>p</tex> и <tex>p'</tex>: <tex>s = w e_{k+1} \ldots  v</tex> и <tex>s' = w e'_{k+1} \ldots v</tex> соответственно. Найдём первую совпадающую вершину  <tex>w'</tex> в <tex>s</tex> и <tex>s'</tex>, не равную <tex>w</tex>. Осталось заметить, что замкнутый путь <tex>c</tex>, полученный объединением <tex>w \leadsto w'</tex> части пути <tex>s</tex> вместе с <tex>w' \leadsto w</tex> частью цепи <tex>s'</tex>, является циклическим путем. Действительно, в  путях <tex>s</tex> и <tex>s'</tex> двух одинаковых рёбер подряд не бывает, т.к. это рёберно простые пути, а рёбра, смежные с <tex>w</tex> и <tex>w'</tex>, не совпадают по построению. Циклический путь <tex>c</tex> является представителем некоторого цикла в графе <tex>G</tex>.
  
"<tex>\Leftarrow</tex>"
+
<tex>\Leftarrow</tex>
  
Предположим, что в графе <tex>G</tex> существует цикл и пусть циклический путь <tex>c = v_0 e_1 v_1 \ldots e_n v_0</tex> {{---}}  его представитель. Найдем первую точку <tex>w = v_k = v_l (l > k)</tex> пересечения <tex>c</tex> с самим собой.  Необходимо такая точка существует, т.к. путь замкнутый. Рассмотрим циклический путь <tex>v_k e_{k+1} \ldots e_l v_l</tex>: он простой, т. к. если это неверно и существует вершина <tex>v_j = v_j' (k < j < j' < l)</tex>, то в <tex>c</tex> вершина <tex>v_j'</tex> повторяется раньше, чем <tex>v_l</tex>. Теперь элементарно взяв две вершины <tex>v_k</tex> и <tex>v_{k+1}</tex> легко заметить, что существует два различных реберно-неперсекающихся пути между ними: <tex>v_k e_{k+1} v_{k+1}</tex> и <tex>v_k e_l v_{l - 1} \ldots v_k</tex>.
+
Предположим, что в графе <tex>G</tex> существует цикл и пусть циклический путь <tex>c = v_0 e_1 v_1 \ldots e_n v_0</tex> {{---}}  его представитель. Найдём первую точку <tex>w = v_k = v_l (l > k)</tex> пересечения <tex>c</tex> с самим собой.  Такая точка существует, т.к. путь замкнутый. Рассмотрим циклический путь <tex>v_k e_{k+1} \ldots e_l v_l</tex>: он простой, т. к. если это неверно и существует вершина <tex>v_j = v_j' (k < j < j' < l)</tex>, то в <tex>c</tex> вершина <tex>v_j'</tex> повторяется раньше, чем <tex>v_l</tex>. Теперь элементарно взяв две вершины <tex>v_k</tex> и <tex>v_{k+1}</tex> легко заметить, что существует два различных рёберно непересекающихся пути между ними: <tex>v_k e_{k+1} v_{k+1}</tex> и <tex>v_k e_l v_{l - 1} \ldots v_k</tex>.
 
  }}
 
  }}
 
+
[[Файл:2_paths_and_a_cycle.png|600px|thumb|center|Иллюстрация к лемме: пути отмечены соответственно <font color="f00000">красным</font> и <font color="0000f0">синим</font> (их общий префикс отмечен пунктиром), а циклический путь <tex>c</tex> проходит вдоль чёрных стрелок]]
  
 
{{Теорема
 
{{Теорема
Строка 18: Строка 16:
 
Если в неориентированном графе существует цикл, то в этом графе существует простой цикл.
 
Если в неориентированном графе существует цикл, то в этом графе существует простой цикл.
 
|proof=
 
|proof=
Воспользуемся доказанной выше леммой. Так как в нашем графе существует цикл, то существуют два реберно-простых пути между некоторыми вершинами: <tex>v_0e_1v_1e_2v_2 ... e_nv_n</tex>, <tex>v'_0e'_1v'_1e'_2v'_2 ... e'_mv'_m</tex>, <tex>v_0 = v'_0</tex>, <tex>v_n = v'_m</tex>. Удалим из путей одинаковые префиксы и суффиксы, оставив из тех только последние и первые вершины, соответственно. Оставшиеся пути: <tex>v_ae_{a+1} ... e_bv_b</tex>, <tex>v'_ae'_{a+1} ... e'_cv'_c</tex>, <tex>v_a = v'_a</tex>, <tex>v_b = v'_c</tex>, <tex>e_{a+1} \neq e'_{a+1}</tex>, <tex>e_b \neq e'_c</tex>.
+
Выберем в графе минимальный по количеству рёбер цикл (он существует, потому что количество рёбер в любом цикле — натуральное число <ref>[[Натуральные и целые числа#.D0.A1.D1.83.D1.89.D0.B5.D1.81.D1.82.D0.B2.D0.BE.D0.B2.D0.B0.D0.BD.D0.B8.D0.B5_.D0.BD.D0.B0.D0.B8.D0.BC.D0.B5.D0.BD.D1.8C.D1.88.D0.B5.D0.B3.D0.BE_.D1.8D.D0.BB.D0.B5.D0.BC.D0.B5.D0.BD.D1.82.D0.B0|Существование наименьшего элемента в любом подмножестве <tex>\Bbb N</tex>]]</ref>). Предположим, что он не простой. Но тогда он содержит дважды одну и ту же вершину, т. е. содержит в себе цикл меньшего размера, что противоречит тому, что наш цикл минимальный. Таким образом, этот цикл — простой.}}
 
 
Рассмотрим конкатенацию первого нового пути и развёрнутого второго нового пути. Она будет циклом, так как начальная и конечная вершины совпадают, изначально пути были рёберно-простыми, а в точке соединения, равно как и в точке замыкания цикла, условие различности двух идущих подряд рёбер выполняется. Мы получили цикл, определим его: <tex>v_0e_1v_1 ... e_kv_k</tex>, <tex>v_0 = v_k</tex>.
 
  
* Алгоритм:
+
[[Файл:Simple cycle.png|thumb|580px|center|В графе минимальный цикл включает в себя три ребра — например, [2 - 5 - 6] (выделен <font color="red">красным</font>). Согласно теореме, он является простым.<br>]]
1. Для вершины <tex>v_i</tex> найдём момент её последнего вхождения в цикл - <tex>v_j</tex>.
 
2. Удалим отрезок цикла от <tex>e_{i+1}</tex> до <tex>v_j</tex>, включительно.
 
Получившаяся последовательность вершин и рёбер графа останется циклом, и в нём вершина <tex>v_i</tex> будет содержаться ровно один раз.
 
Начнём процесс с вершины <tex>v_1</tex> и будем повторять его каждый раз для следующей вершины нового цикла, пока не дойдём до последней. По построению, получившийся цикл будет содержать каждую из вершин графа не более одного раза, а значит, будет простым.
 
}}
 
 
 
[[Файл: Prostoy cikl.png|thumb|600px|center|Для вершины 2 находим последнее ее вхождение в цикл и удаляем отрезок цикла, выделенный <font color=#22B14C>зеленым.</font><br>[(2, 5) - 5 - (5, 6) - 6 - (6, 4) - 4 - (4, 2) - 2]]]
 
  
 
== Замечания ==
 
== Замечания ==
 
* Так как вершинно-простой путь всегда является рёберно-простым, первая теорема справедлива и для вершинно-простых путей (усиление условия).
 
* Так как вершинно-простой путь всегда является рёберно-простым, первая теорема справедлива и для вершинно-простых путей (усиление условия).
 
* Так как вершинно-простой цикл всегда является рёберно-простым, первая теорема справедлива и для рёберно-простого цикла (ослабление результата).
 
* Так как вершинно-простой цикл всегда является рёберно-простым, первая теорема справедлива и для рёберно-простого цикла (ослабление результата).
* Утверждение
+
{{Утверждение
''Если две вершины графа лежат на цикле, то они лежат на простом цикле.''
+
|about=неверное
 +
|statement=''Если две вершины графа лежат на цикле, то они лежат на простом цикле.''
 +
|proof=
 +
В общем случае неверно, так как эти вершины могут лежать в разных компонентах вершинной или рёберной двусвязности: все пути из одной вершины в другую будут содержать одну и ту же [[Точка сочленения, эквивалентные определения|точку сочленения]] или один и тот же [[Мост, эквивалентные определения|мост]].
 +
}}
  
в общем случае неверно, так как эти вершины могут лежать в разных компонентах вершинной или рёберной двусвязности: все пути из одной вершины в другую будут содержать одну и ту же точку сочленения или один и тот же мост.
+
== Примечания ==
 +
<references/>
  
 
== См. также ==
 
== См. также ==
* [[Основные определения теории графов]]
 
 
* [[Теорема о существовании простого пути в случае существования пути]]
 
* [[Теорема о существовании простого пути в случае существования пути]]
* [[Отношение реберной двусвязности]]
+
* [[Отношение рёберной двусвязности]]
 
* [[Отношение вершинной двусвязности]]
 
* [[Отношение вершинной двусвязности]]
  

Текущая версия на 16:24, 1 февраля 2017

Лемма:
Наличие двух различных рёберно простых путей между какими-либо двумя вершинами неориентированного графа [math]G[/math] равносильно наличию цикла в этом графе.
Доказательство:
[math]\triangleright[/math]

[math]\Rightarrow[/math]

Предположим, что в графе [math]G[/math] существует два различных рёберно простых пути между вершинами [math]u[/math] и [math]v[/math]. Пусть это будут пути [math]p = u e_1 v_1\ldots v_{n-1} e_n v[/math] и [math]p' = u e'_1 v'_1\ldots v'_{n-1} e'_n v[/math]. Пусть их наибольший общий префикс заканчивается в вершине [math]w = v_k = v'_k[/math]. Заметим, что [math]w \neq v[/math], т.к. пути различны. Рассмотрим суффиксы путей [math]p[/math] и [math]p'[/math]: [math]s = w e_{k+1} \ldots v[/math] и [math]s' = w e'_{k+1} \ldots v[/math] соответственно. Найдём первую совпадающую вершину [math]w'[/math] в [math]s[/math] и [math]s'[/math], не равную [math]w[/math]. Осталось заметить, что замкнутый путь [math]c[/math], полученный объединением [math]w \leadsto w'[/math] части пути [math]s[/math] вместе с [math]w' \leadsto w[/math] частью цепи [math]s'[/math], является циклическим путем. Действительно, в путях [math]s[/math] и [math]s'[/math] двух одинаковых рёбер подряд не бывает, т.к. это рёберно простые пути, а рёбра, смежные с [math]w[/math] и [math]w'[/math], не совпадают по построению. Циклический путь [math]c[/math] является представителем некоторого цикла в графе [math]G[/math].

[math]\Leftarrow[/math]

Предположим, что в графе [math]G[/math] существует цикл и пусть циклический путь [math]c = v_0 e_1 v_1 \ldots e_n v_0[/math] — его представитель. Найдём первую точку [math]w = v_k = v_l (l \gt k)[/math] пересечения [math]c[/math] с самим собой. Такая точка существует, т.к. путь замкнутый. Рассмотрим циклический путь [math]v_k e_{k+1} \ldots e_l v_l[/math]: он простой, т. к. если это неверно и существует вершина [math]v_j = v_j' (k \lt j \lt j' \lt l)[/math], то в [math]c[/math] вершина [math]v_j'[/math] повторяется раньше, чем [math]v_l[/math]. Теперь элементарно взяв две вершины [math]v_k[/math] и [math]v_{k+1}[/math] легко заметить, что существует два различных рёберно непересекающихся пути между ними: [math]v_k e_{k+1} v_{k+1}[/math] и [math]v_k e_l v_{l - 1} \ldots v_k[/math].
[math]\triangleleft[/math]
Иллюстрация к лемме: пути отмечены соответственно красным и синим (их общий префикс отмечен пунктиром), а циклический путь [math]c[/math] проходит вдоль чёрных стрелок
Теорема:
Если в неориентированном графе существует цикл, то в этом графе существует простой цикл.
Доказательство:
[math]\triangleright[/math]
Выберем в графе минимальный по количеству рёбер цикл (он существует, потому что количество рёбер в любом цикле — натуральное число [1]). Предположим, что он не простой. Но тогда он содержит дважды одну и ту же вершину, т. е. содержит в себе цикл меньшего размера, что противоречит тому, что наш цикл минимальный. Таким образом, этот цикл — простой.
[math]\triangleleft[/math]
В графе минимальный цикл включает в себя три ребра — например, [2 - 5 - 6] (выделен красным). Согласно теореме, он является простым.

Замечания[править]

  • Так как вершинно-простой путь всегда является рёберно-простым, первая теорема справедлива и для вершинно-простых путей (усиление условия).
  • Так как вершинно-простой цикл всегда является рёберно-простым, первая теорема справедлива и для рёберно-простого цикла (ослабление результата).
Утверждение (неверное):
Если две вершины графа лежат на цикле, то они лежат на простом цикле.
[math]\triangleright[/math]
В общем случае неверно, так как эти вершины могут лежать в разных компонентах вершинной или рёберной двусвязности: все пути из одной вершины в другую будут содержать одну и ту же точку сочленения или один и тот же мост.
[math]\triangleleft[/math]

Примечания[править]

См. также[править]