Теорема о существовании простого цикла в случае существования цикла

Материал из Викиконспекты
Версия от 16:24, 1 февраля 2017; Дмитрий Мурзин (обсуждение | вклад)
(разн.) ← Предыдущая | Текущая версия (разн.) | Следующая → (разн.)
Перейти к: навигация, поиск
Лемма:
Наличие двух различных рёберно простых путей между какими-либо двумя вершинами неориентированного графа [math]G[/math] равносильно наличию цикла в этом графе.
Доказательство:
[math]\triangleright[/math]

[math]\Rightarrow[/math]

Предположим, что в графе [math]G[/math] существует два различных рёберно простых пути между вершинами [math]u[/math] и [math]v[/math]. Пусть это будут пути [math]p = u e_1 v_1\ldots v_{n-1} e_n v[/math] и [math]p' = u e'_1 v'_1\ldots v'_{n-1} e'_n v[/math]. Пусть их наибольший общий префикс заканчивается в вершине [math]w = v_k = v'_k[/math]. Заметим, что [math]w \neq v[/math], т.к. пути различны. Рассмотрим суффиксы путей [math]p[/math] и [math]p'[/math]: [math]s = w e_{k+1} \ldots v[/math] и [math]s' = w e'_{k+1} \ldots v[/math] соответственно. Найдём первую совпадающую вершину [math]w'[/math] в [math]s[/math] и [math]s'[/math], не равную [math]w[/math]. Осталось заметить, что замкнутый путь [math]c[/math], полученный объединением [math]w \leadsto w'[/math] части пути [math]s[/math] вместе с [math]w' \leadsto w[/math] частью цепи [math]s'[/math], является циклическим путем. Действительно, в путях [math]s[/math] и [math]s'[/math] двух одинаковых рёбер подряд не бывает, т.к. это рёберно простые пути, а рёбра, смежные с [math]w[/math] и [math]w'[/math], не совпадают по построению. Циклический путь [math]c[/math] является представителем некоторого цикла в графе [math]G[/math].

[math]\Leftarrow[/math]

Предположим, что в графе [math]G[/math] существует цикл и пусть циклический путь [math]c = v_0 e_1 v_1 \ldots e_n v_0[/math] — его представитель. Найдём первую точку [math]w = v_k = v_l (l \gt k)[/math] пересечения [math]c[/math] с самим собой. Такая точка существует, т.к. путь замкнутый. Рассмотрим циклический путь [math]v_k e_{k+1} \ldots e_l v_l[/math]: он простой, т. к. если это неверно и существует вершина [math]v_j = v_j' (k \lt j \lt j' \lt l)[/math], то в [math]c[/math] вершина [math]v_j'[/math] повторяется раньше, чем [math]v_l[/math]. Теперь элементарно взяв две вершины [math]v_k[/math] и [math]v_{k+1}[/math] легко заметить, что существует два различных рёберно непересекающихся пути между ними: [math]v_k e_{k+1} v_{k+1}[/math] и [math]v_k e_l v_{l - 1} \ldots v_k[/math].
[math]\triangleleft[/math]
Иллюстрация к лемме: пути отмечены соответственно красным и синим (их общий префикс отмечен пунктиром), а циклический путь [math]c[/math] проходит вдоль чёрных стрелок
Теорема:
Если в неориентированном графе существует цикл, то в этом графе существует простой цикл.
Доказательство:
[math]\triangleright[/math]
Выберем в графе минимальный по количеству рёбер цикл (он существует, потому что количество рёбер в любом цикле — натуральное число [1]). Предположим, что он не простой. Но тогда он содержит дважды одну и ту же вершину, т. е. содержит в себе цикл меньшего размера, что противоречит тому, что наш цикл минимальный. Таким образом, этот цикл — простой.
[math]\triangleleft[/math]
В графе минимальный цикл включает в себя три ребра — например, [2 - 5 - 6] (выделен красным). Согласно теореме, он является простым.

Замечания[править]

  • Так как вершинно-простой путь всегда является рёберно-простым, первая теорема справедлива и для вершинно-простых путей (усиление условия).
  • Так как вершинно-простой цикл всегда является рёберно-простым, первая теорема справедлива и для рёберно-простого цикла (ослабление результата).
Утверждение (неверное):
Если две вершины графа лежат на цикле, то они лежат на простом цикле.
[math]\triangleright[/math]
В общем случае неверно, так как эти вершины могут лежать в разных компонентах вершинной или рёберной двусвязности: все пути из одной вершины в другую будут содержать одну и ту же точку сочленения или один и тот же мост.
[math]\triangleleft[/math]

Примечания[править]

См. также[править]