Редактирование: Теоретический минимум по математическому анализу за 3 семестр

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 305: Строка 305:
 
=23. Интегрируемость ограниченной, измеримой функции=
 
=23. Интегрируемость ограниченной, измеримой функции=
  
Пусть <tex>E</tex> - произвольное измеримое множество, <tex>f: E \to \mathbb{R_{+}}</tex> - измеримая функция.
+
{{Теорема
 
+
|statement=Пусть <tex>f</tex>{{---}} измерима и ограничена на <tex>E</tex>, <tex>\mu E < +\infty</tex>. Тогда <tex>f</tex>{{---}} интегрируема по Лебегу на <tex>E</tex>.  
Рассмотрим набор множеств <tex> e </tex>, такой, что <tex>e \in E</tex> - измеримо, <tex>\mu e < +\infty</tex>, <tex>f</tex> - ограничена на <tex>e</tex>. В такой ситуации существует <tex>\int \limits_{e} f d\mu</tex> {{---}} интеграл Лебега.
 
 
 
{{Определение
 
|definition=
 
<tex> f </tex> '''суммируема''' на <tex> E </tex>, если <tex>\sup \limits_{\{e \}} \int \limits_{e} f d\mu = \int \limits_{E} f d\mu</tex> {{---}}  интеграл по <tex>E</tex>.
 
 
}}
 
}}
  

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)