Теоретический минимум по функциональному анализу за 6 семестр — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(6 О компактности A^*, сепарабельность R(A).)
м (10 (year2012) О компактности А*)
(не показано 77 промежуточных версий 17 участников)
Строка 1: Строка 1:
= 1 <tex>A^*</tex> и его ограниченность. =
+
== 1 A* и его ограниченность ==
 
Пусть оператор <tex> A </tex> действует из <tex> E </tex> в <tex> F </tex>, и функционал <tex> \varphi </tex> принадлежит <tex> F^* </tex>.
 
Пусть оператор <tex> A </tex> действует из <tex> E </tex> в <tex> F </tex>, и функционал <tex> \varphi </tex> принадлежит <tex> F^* </tex>.
  
Строка 13: Строка 13:
 
}}
 
}}
  
= 2 Ортогональные дополнения <tex>E</tex> и <tex>E^*</tex>. =
+
== 2 Ортогональные дополнения <tex> E </tex> и <tex> E^* </tex> ==
 
{{Определение
 
{{Определение
 
|definition=
 
|definition=
Строка 23: Строка 23:
 
}}
 
}}
  
= 3 Ортогональное дополнение <tex>R(A)</tex>. =
+
{{Утверждение
= 4 Ортогональное дополнение <tex>R(A^*)</tex>. =
+
|statement= <tex> \{ 0 \} = (E^*)^{\bot}, \{ \mathbf{0} \} = E^{\bot} </tex>.
= 5 Арифметика компактных операторов. =
+
}}
 +
 
 +
== 3 Ортогональное дополнение R(A) ==
 +
{{Теорема
 +
|statement= <tex> A \in \mathcal{L}(E,F) \implies \operatorname{Cl} R(A) = (\operatorname{Ker} A^*)^\perp </tex>.
 +
}}
 +
 
 +
== 4 Ортогональное дополнение R(A*) ==
 +
{{Теорема
 +
|statement= <tex> A \in \mathcal{L}(E,F),~R(A) = \operatorname{Cl} R(A) \implies  R(A^*) = (\operatorname{Ker}A )^\perp </tex>.
 +
}}
 +
 
 +
== 5 Арифметика компактных операторов ==
 
{{Определение
 
{{Определение
 
|definition=
 
|definition=
Строка 42: Строка 54:
 
}}
 
}}
  
= 6 О компактности <tex>A^*</tex>, сепарабельность <tex>R(A)</tex>. =
+
== 10 (year2012) О компактности А* ==
 +
{{Определение
 +
|definition=
 +
<tex> C(K) </tex> - совокупность функций непрерывных на метрическом компакте K с равномерной нормой, т.е. <tex> \| f \| = \max\limits_{x \in K} | f(x) | </tex>
 +
}}
 +
{{Теорема
 +
|author=Арцело-Асколи
 +
|statement=
 +
\\TODO
 +
}}
 +
{{Теорема
 +
|statement=
 +
<tex> A </tex> компактен <tex> \implies A^* </tex> компактен.
 +
}}
 +
 
 +
== 9 Размерность Ker(I-A) компактного A ==
 +
{{Утверждение
 +
|statement=
 +
<tex>A</tex> {{---}} компактный оператор. Тогда <tex>\dim\operatorname{Ker}(I-A) < + \infty</tex>
 +
}}
 +
 
 +
== 10 Замкнутость R(I-A)  компактного A ==
 +
{{Теорема
 +
|statement=
 +
Пусть <tex>T = I - A</tex>, <tex>A</tex> компактен, тогда <tex> R(T) </tex> замкнуто.
 +
}}
 +
 
 +
== 11 Лемма о Ker(I-A)^n  компактного A ==
 +
{{Утверждение
 +
|statement=
 +
Пусть <tex> M_n = \operatorname{Ker} ((I - A)^n), n \in \mathbb N</tex>, <tex> A </tex> — компактный оператор.
 +
Тогда <tex> \exists n_0: M_{n_0} = M_{n_0 + 1} </tex>.
 +
}}
 +
 
 +
== 12 Условие справедливости  равенства  R(I-A)=E ==
 +
{{Утверждение
 +
|statement=
 +
Пусть <tex> A </tex> — компактный оператор на банаховом <tex> E </tex>, <tex> T = I - A </tex>.
 +
Тогда <tex> R(T) = E \iff \operatorname{Ker} T = \{0\} </tex>.
 +
}}
 +
 
 +
== 13 Альтернатива Фредгольма-Шаудера ==
 +
{{Теорема
 +
|about=
 +
альтернатива Фредгольма-Шаудера
 +
|statement=
 +
Пусть <tex>A:X \to X</tex> — компактный оператор и <tex>T = A - \lambda I</tex>. Тогда возможно только две ситуации:
 +
# <tex>\operatorname{Ker} T = \{0\}</tex>, тогда <tex> y = Tx</tex> разрешимо для любого <tex>y</tex>
 +
# <tex>\operatorname{Ker} T \ne \{0\}</tex>, тогда <tex> y = Tx</tex> разрешимо только для тех <tex>y</tex>, которые принадлежат <tex>(\operatorname{Ker} T^*)^\perp</tex>
 +
}}
 +
 
 +
== 14 Спектр компактного оператора ==
 +
Рассмотрим <tex>A - \lambda I</tex>.
 +
 
 +
# <tex>\operatorname{Ker} (A - \lambda I) \ne \{0\}</tex>, тогда оператор необратим, и <tex>\lambda</tex> — собственное число, то есть <tex>\lambda \in \sigma(A)</tex>.
 +
# <tex>\operatorname{Ker} (A - \lambda I) = \{0\}</tex>, тогда по альтернативе, оператор непрерывно обратим, то есть <tex>\lambda \in \rho(A)</tex>.
 +
 
 +
Таким образом, спектр состоит из собственных чисел, и, возможно, нуля. Теперь изучим мощность спектра:
 +
 
 +
{{Теорема
 +
|statement=
 +
Спектр компактного оператора не более чем счётен и его предельной точкой может быть только 0.
 +
}}
 +
 
 +
== 15 Определение самосопряженного оператора, неравенство для (a+ib)I-A ==
 +
{{Определение
 +
|definition=Оператор <tex>\mathcal{A}</tex> называется ''самосопряжённым'' (<tex>\mathcal{A} = \mathcal{A}^*</tex>), если <tex>\forall x, y : \langle \mathcal{A}x, y \rangle = \langle x, \mathcal{A}y \rangle</tex>
 +
}}
 +
<tex>\lambda \in \mathbb{C}</tex>, <tex>\lambda \mathcal{I} - \mathcal{A} = (\mu\mathcal{I} - \mathcal{A}) + i\nu\mathcal{I}</tex>
 +
 
 +
<tex>\|(\lambda\mathcal{I}-\mathcal{A})x\| \ge |\nu|\cdot\|x\|</tex>
 +
 
 +
== 16 Вещественность спектра ограниченного самосопряженного оператора ==
 +
{{Утверждение
 +
|statement=Собственные числа самосопряжённого оператора вещественны
 +
}}
 +
 
 +
== 17 Критерий включения в резольвентное  множество ограниченного самосопряженного оператора ==
 +
{{Теорема
 +
|statement=Пусть <tex>\mathcal{A}</tex>{{---}} самосопряжённый оператор. Тогда
 +
<tex>\lambda \in \rho(\mathcal{A}) \iff \exists m > 0 : \forall x \in \mathcal{H} : \|(\lambda\mathcal{I}-\mathcal{A})x\| \ge m\|x\|</tex>
 +
}}
 +
 
 +
== 18 Критерий включения в спектр  ограниченного самосопряженного оператора ==
 +
{{Теорема
 +
|statement=Пусть <tex>\mathcal{A}</tex>{{---}} самосопряжённый оператор. Тогда
 +
<tex>\lambda \in \sigma(\mathcal{A}) \iff \exists x_n : \|x_n\| = 1 : \|(\lambda\mathcal{I}-\mathcal{A})x_n\| \to 0 </tex>
 +
}}
 +
 
 +
== 19 Локализация спектра с.с. оператора посредством  чисел m- и m+ ==
 +
{{Определение
 +
|definition=<tex>m_- = \inf\limits_{\|x\| = 1} \langle \mathcal{A}x, x\rangle, m_+ = \sup\limits_{\|x\| = 1} \langle \mathcal{A}x, x \rangle</tex>
 +
}}
 +
{{Теорема
 +
|statement=Пусть A — самосопряженный оператор
 +
 
 +
1. <tex>\sigma(\mathcal{A}) \subset [m_-; m_+]</tex>
 +
 
 +
2. <tex>m_+, m_- \in \sigma(\mathcal{A})</tex>
 +
}}
 +
 
 +
== 20 Спектральный радиус ограниченного самосопряженного оператора и его норма ==
 +
{{Утверждение
 +
|statement=Если <tex>\mathcal{A}</tex>{{---}} самосопряжённый оператор, то <tex>r_\sigma(\mathcal{A}) = \|\mathcal{A}\|</tex>
 +
}}
 +
 
 +
== 21 Теорема Гильберта-Шмидта ==
 +
{{Теорема
 +
|author=Гильберт, Шмидт
 +
|statement=Если <tex>\mathcal{A}</tex>{{---}} самосопряжённый компактный оператор в гильбертовом пространстве <tex>\mathcal{H}</tex>, а <tex>M_{\lambda_i}</tex>{{---}} его (оператора) собственные подпространства, то <tex>\mathcal{H} = M_{\lambda_1} \oplus M_{\lambda_2} \oplus \cdots \oplus M_{\lambda_n} \oplus \cdots </tex>
 +
}}
 +
 
 +
== 22 Разложение резольвенты компактного  самосопряженного оператора. ==
 +
<tex>R_\lambda(y) = \sum\limits_{n=1}^\infty \frac{\langle y, \varphi_n\rangle}{\lambda-\lambda_n}\varphi_n</tex>
 +
 
 +
==Теорема Банаха о сжимающем отображении==
 +
 
 +
{{Определение
 +
|definition=Пусть на замкнутом шаре <tex>\overline{V} \subset X</tex>, где <tex>X</tex> - метрическое пространство, определён оператор <tex>A: \overline{V} \subset X \to X</tex>. Он называется '''сжатием''' на <tex>\overline{V}</tex>, если <tex>\exists\alpha\in(0; 1)</tex> такой, что для <tex>{\forall}x,y \in M</tex> выполняется <tex>{\rho(Ax,Ay)\leqslant\alpha{\cdot}\rho(x,y)}</tex>.
 +
}}
 +
 
 +
{{Теорема
 +
|statement=(''Банаха о неподвижной точке'')
 +
Пусть <tex>T : \overline{V} \to \overline{V}</tex> и является сжатием, тогда в этом шаре у оператора <tex>T</tex> <tex>\exists !</tex> неподвижная точка.
 +
}}
 +
[[Теорема Банаха о неподвижной точке]]
 +
 
 +
==Дифференцирование отображений, неравенство Лагранжа.==
 +
 
 +
Рассмотрим <tex>T : V_r(x_0) \to Y</tex>, где <tex>V_r(x_0) \subset X</tex> и, кроме того, <tex>X, Y</tex> - нормированные пространства.
 +
 
 +
Пусть <tex>\|\delta x \| < r</tex>. Тогда, очевидно, <tex>x + \delta x \in V_r(x_0)</tex>.
 +
 
 +
Обозначим <tex>\delta T(x_0, \delta x) = T(x_0 + \delta x) - T(x_0)</tex>.
 +
 
 +
'''Def.''' Отображение <tex>T</tex> называется дифференцируемым по Фреше в точке <tex>x_0</tex>, если существует оператор <tex>A_{x_0} \in L(X,Y)</tex> такой, что <tex>\delta T(x_0, \delta x) = A_{x_0}(\delta x) + o(\delta x)</tex>, где <tex>o(\delta x)</tex> несёт следующий смысл: <tex>\frac{ {\|o(\delta x)\|}_Y } {{\| \delta x \|}_X} \to 0</tex>.
 +
 
 +
Обычно, в случае дифференцируемого отображения используют следующее обозначение: <tex>T_{x_0}' = A_{x_0}</tex>. Подчеркнем, что <tex>T_{x_0}': X \to Y</tex>. Аргументом является "отклонение" некоторой точки <tex>x'</tex> от <tex>x_0</tex>: <tex>x - x_0</tex>. А результат применения оператора: <tex>T(x') - T(x_0)</tex> с точностью до <tex>o(\delta x = x' - x)</tex>.
 +
 
 +
'''Lm.''' (''Неравенство Лагранжа'')
 +
Пусть <tex>X, Y</tex> -- нормированные пространства, <tex>V</tex> -- некоторый шар в <tex>X</tex> и дан оператор <tex>T : V \to Y</tex> и на всем этом шаре <tex>\exists T'(x)</tex>. Тогда для любых <tex>a, b \in V : \|T(b) - T(a)\| \le M {\|b - a\|}_X</tex>, где <tex>M = sup_{x \in [a, b]}\|T'(x)\|</tex>.
 +
 
 +
==Локальная теорема о неявном отображении==
 +
 
 +
'''Th.'''(''о неявном отображении'')
 +
 
 +
Пусть <tex>V</tex> - шар в <tex> X, V \subset X</tex>, а <tex>W \subset Y</tex> - шар в <tex>Y</tex>, и задан оператор <tex>T : {V} \times {W} \rightarrow Y</tex>.
 +
 
 +
Пусть <tex>x_0 \in V,\: y_0 \in W,\: T(x_0, y_0) = 0 \in Y</tex>.
 +
 
 +
Пусть <tex> \forall x \in V, \forall y \in W \quad \exists T^{'}_y </tex> - дифференциал Фреше, непрерывный как отображение переменных <tex>x</tex> и <tex>y</tex>.
 +
 
 +
Пусть также <tex>T^{'}_{y}(x_0, y_0)</tex> - непрерывно обратим.
 +
 
 +
'''Тогда''' задача о неявном отображении для <tex>T(x, y) = 0</tex> c начальным решением <tex>T(x_0, y_0) = 0</tex> разрешима в некоторых окрестностях точек <tex>x_0, y_0</tex>, а именно: для любого <tex>x' \in V_{\delta_1}(x_0)</tex> существует единственное <tex>y' \in V_{\delta_2}(y_0) : T(x', y') = 0</tex> .
 +
 
 +
http://neerc.ifmo.ru/wiki/index.php?title=Локальная_теорема_о_неявном_отображении
 +
 
 +
== 24 Локальная сходимость метода Ньютона для операторных уравнений ==
 +
<tex> \mathcal{F}(x) = x - \Gamma(x) \mathcal{T} (x)</tex>
 +
{{Утверждение
 +
|statement=<tex> \mathcal{F}'(\overline x) = 0 </tex>
 +
}}
 +
 
 +
== 25 Проекторы Шаудера ==
 +
<tex> \forall \varepsilon > 0 \exists y_1 \in M, \hdots, y_p \in M </tex> {{---}} конечная <tex> \varepsilon </tex>-сеть.
 +
 
 +
Построим следующую функцию: <tex> \forall j = 1, \hdots, p, \forall y \in M: </tex>
 +
 
 +
<tex> \mu_j(y) = \begin{cases}
 +
0                          & \mbox{if } \| y - y_j \| \ge \varepsilon \\
 +
\varepsilon - \| y - y_j \| & \mbox{if } \| y - y_j \| < \varepsilon \end{cases}
 +
</tex>
 +
 
 +
<tex> S(y) = \sum\limits_{j=1}^p \mu_j(y) </tex>
 +
{{Определение
 +
|definition=
 +
 
 +
<tex dpi = 140> P_\varepsilon (y) = \sum\limits_{j=1}^p \frac {\mu_j(y)} {S(y)} y_j </tex> {{---}} ''проектор Шаудера''.
 +
 
 +
}}
 +
 
 +
== 26 Теорема Шаудера о неподвижной точке ==
 +
{{Теорема
 +
|author=Шаудер
 +
|about=о неподвижной точке
 +
|statement=
 +
Пусть <tex> M </tex> {{---}} ограниченное замкнутое выпуклое подмножество B-пространства <tex> X </tex> и <tex> \mathcal{T} </tex> вполне непрерывно отображает <tex> M </tex> в себя.
 +
 
 +
Тогда <tex> \exists x^* \in M : x^* = Tx^* </tex>.
 +
}}
 +
 
 +
== 6 О компактности A*, сепарабельность R(A) ==
  
 
{{Утверждение
 
{{Утверждение
Строка 49: Строка 253:
 
}}
 
}}
  
= 7 Базис Шаудера, лемма о координатном пространстве. =
+
{{Утверждение
= 8 Почти конечномерность компактного оператора. =
+
|statement =
= 9 Размерность <tex>\operatorname{Ker}(I-A)</tex> компактного <tex>A</tex>. =
+
<tex>A</tex> — компактен <tex>\implies</tex> <tex>A^*</tex> — компактен
= 10 Замкнутость <tex>R(I-A)</tex> компактного <tex>A</tex>. =
+
}}
= 11 Лемма о <tex>\operatorname{Ker}(I-A)^n</tex> компактного <tex>A</tex>. =
+
 
= 12 Условие справедливости  равенства  <tex>R(I-A)=E</tex>. =
+
== 7 Базис Шаудера, лемма о координатном пространстве ==
= 13 Альтернатива Фредгольма-Шаудера. =
+
{{Определение
= 14 Спектр компактного оператора. =
+
|definition=
= 15 Определение самосопряженного оператора, неравенство для <tex>(a+ib)I-A</tex>. =
+
Базисом Шаудера в банаховом пространстве <tex>X</tex> называется множество его элементов <tex>e_1, e_2 \dots e_n \dots</tex> такое, что у любого <tex>x</tex> в <tex>X</tex> существует единственное разложение <tex>x = \sum\limits_{i = 1}^{\infty} \alpha_i e_i</tex>.
= 16 Вещественность спектра ограниченного самосопряженного оператора. =
+
}}
= 17 Критерий включения в резольвентное  множество ограниченного самосопряженного оператора. =
+
 
= 18 Критерий включения в спектр  ограниченного самосопряженного оператора. =
+
Определим <tex>F = \{(\alpha_1 \dots \alpha_n\dots) \mid \exists x \in X: \sum\limits_{n=1}^\infty \alpha_n e_n \to x \}</tex> — это линейное пространство.
= 19 Локализация спектра с.с. оператора посредством  чисел <tex>m-</tex> и  <tex>m+</tex>. =
+
 
= 20 Спектральный радиус ограниченного самосопряженного оператора и его норма. =
+
Так как ряд сходится, <tex>F</tex> можно превратить в НП, определив норму как <tex>\| \alpha \| = \sup\limits_n \left\| \sum\limits_{i=1}^n \alpha_i e_i\right\|</tex>.
= 21 Теорема Гильберта-Шмидта. =
+
 
= 22 Разложение резольвенты компактного  самосопряженного оператора. =
+
{{Утверждение
= 23 Локальная сходимость метода простой итерации. =
+
|statement=
= 24 Локальная сходимость метода Ньютона для операторных уравнений. =
+
Пространство <tex> F </tex> относительно этой нормы — банахово.
= 25 Проекторы Шаудера. =
+
}}
= 26 Теорема Шаудера о неподвижной точке. =
+
 
 +
== 8 Почти конечномерность компактного оператора ==
 +
{{Теорема
 +
|about=
 +
почти конечномерность компактного оператора
 +
|statement=
 +
Если <tex>X</tex> — банахово пространство с базисом Шаудера, <tex>A:X \to X</tex> — компактный, то для всех <tex>\varepsilon > 0</tex> существует разложение оператора <tex>A</tex> в сумму двух компактных операторов: <tex>A = A_1 + A_2</tex> такое, что:
 +
 
 +
# <tex>\operatorname{dim}(R(A_1)) < +\infty</tex>
 +
# <tex>\|A_2\| < \varepsilon</tex>
 +
}}
 +
== 23 Локальная сходимость метода простой итерации ==
 +
{{Теорема
 +
|about=Локальная теорема о простой итерации
 +
|statement=
 +
Пусть известно, что существует <tex> \overline{x}: \mathcal{T}(\overline{x}) = \overline{x} </tex> и <tex> \| \mathcal{T}(\overline{x})' \| \le q < 1 </tex>.
 +
 
 +
Тогда существует такой шар <tex> V_{\delta} (\overline x) </tex>, что если <tex> x_0 \in V_{\delta} (\overline x) </tex>, то:
 +
* Метод простых итераций корректно определен: <tex> \mathcal{T}x_n \in V_{\delta} (\overline x), n \ge 0</tex>.
 +
* <tex> x_n \to \overline x </tex>
 +
}}
  
  
 
[[Категория: Функциональный анализ 3 курс]]
 
[[Категория: Функциональный анализ 3 курс]]

Версия 18:46, 24 июня 2015

Содержание

1 A* и его ограниченность

Пусть оператор [math] A [/math] действует из [math] E [/math] в [math] F [/math], и функционал [math] \varphi [/math] принадлежит [math] F^* [/math].

Рассмотрим [math] f(x) = \varphi (Ax), | f(x) | \le \| \varphi \| \| A \| \| x \| [/math].

Получили новый функционал [math] f [/math], принадлежащий [math] E^* [/math]. [math] \varphi \mapsto \varphi A [/math].

[math] \varphi A = A^* (\varphi), A^* : F^* \to E^* [/math]. [math] A^* [/math]сопряженный оператор к [math] A [/math].

Теорема:
Если [math] A [/math] — линейный ограниченный оператор, то [math] \| A^* \| = \| A \| [/math].

2 Ортогональные дополнения [math] E [/math] и [math] E^* [/math]

Определение:
Пусть [math] E [/math] — НП, [math] S \subset E^* [/math].

[math] S^{\bot} = \{ x \in E \mid \forall f \in S: f(x) = 0 \} [/math]ортогональное дополнение [math] S [/math].

Аналогично, если [math] T \subset E [/math], то [math] T^{\bot} = \{ f \in E^* \mid \forall x \in T: f(x) = 0 \} [/math].


Утверждение:
[math] \{ 0 \} = (E^*)^{\bot}, \{ \mathbf{0} \} = E^{\bot} [/math].

3 Ортогональное дополнение R(A)

Теорема:
[math] A \in \mathcal{L}(E,F) \implies \operatorname{Cl} R(A) = (\operatorname{Ker} A^*)^\perp [/math].

4 Ортогональное дополнение R(A*)

Теорема:
[math] A \in \mathcal{L}(E,F),~R(A) = \operatorname{Cl} R(A) \implies R(A^*) = (\operatorname{Ker}A )^\perp [/math].

5 Арифметика компактных операторов

Определение:
Множество называется относительно компактным (предкомпактным), если его замыкание компактно


Определение:
Линейный ограниченный оператор [math] A : X \to Y [/math] называется компактным, если [math] A [/math] переводит любое ограниченное подмножество [math] X [/math] в относительно компактное множество из [math] Y [/math].
Утверждение:
[math] A \in \mathcal{L} (X,Y), ~ B \in \mathcal{L} (Y,Z) [/math], [math] C = B \cdot A [/math] (произведение, суперпозиция). Тогда:
  1. Если [math] B [/math] ­— ограниченный, [math] A [/math] ­— компактный, то [math] C [/math] ­— компактный.
  2. Если [math] B [/math] ­— компактный, [math] A [/math] ­— ограниченный, то [math] C [/math] ­— компактный.

10 (year2012) О компактности А*

Определение:
[math] C(K) [/math] - совокупность функций непрерывных на метрическом компакте K с равномерной нормой, т.е. [math] \| f \| = \max\limits_{x \in K} | f(x) | [/math]
Теорема (Арцело-Асколи):
\\TODO
Теорема:
[math] A [/math] компактен [math] \implies A^* [/math] компактен.

9 Размерность Ker(I-A) компактного A

Утверждение:
[math]A[/math] — компактный оператор. Тогда [math]\dim\operatorname{Ker}(I-A) \lt + \infty[/math]

10 Замкнутость R(I-A) компактного A

Теорема:
Пусть [math]T = I - A[/math], [math]A[/math] компактен, тогда [math] R(T) [/math] замкнуто.

11 Лемма о Ker(I-A)^n компактного A

Утверждение:
Пусть [math] M_n = \operatorname{Ker} ((I - A)^n), n \in \mathbb N[/math], [math] A [/math] — компактный оператор. Тогда [math] \exists n_0: M_{n_0} = M_{n_0 + 1} [/math].

12 Условие справедливости равенства R(I-A)=E

Утверждение:
Пусть [math] A [/math] — компактный оператор на банаховом [math] E [/math], [math] T = I - A [/math]. Тогда [math] R(T) = E \iff \operatorname{Ker} T = \{0\} [/math].

13 Альтернатива Фредгольма-Шаудера

Теорема (альтернатива Фредгольма-Шаудера):
Пусть [math]A:X \to X[/math] — компактный оператор и [math]T = A - \lambda I[/math]. Тогда возможно только две ситуации:
  1. [math]\operatorname{Ker} T = \{0\}[/math], тогда [math] y = Tx[/math] разрешимо для любого [math]y[/math]
  2. [math]\operatorname{Ker} T \ne \{0\}[/math], тогда [math] y = Tx[/math] разрешимо только для тех [math]y[/math], которые принадлежат [math](\operatorname{Ker} T^*)^\perp[/math]

14 Спектр компактного оператора

Рассмотрим [math]A - \lambda I[/math].

  1. [math]\operatorname{Ker} (A - \lambda I) \ne \{0\}[/math], тогда оператор необратим, и [math]\lambda[/math] — собственное число, то есть [math]\lambda \in \sigma(A)[/math].
  2. [math]\operatorname{Ker} (A - \lambda I) = \{0\}[/math], тогда по альтернативе, оператор непрерывно обратим, то есть [math]\lambda \in \rho(A)[/math].

Таким образом, спектр состоит из собственных чисел, и, возможно, нуля. Теперь изучим мощность спектра:

Теорема:
Спектр компактного оператора не более чем счётен и его предельной точкой может быть только 0.

15 Определение самосопряженного оператора, неравенство для (a+ib)I-A

Определение:
Оператор [math]\mathcal{A}[/math] называется самосопряжённым ([math]\mathcal{A} = \mathcal{A}^*[/math]), если [math]\forall x, y : \langle \mathcal{A}x, y \rangle = \langle x, \mathcal{A}y \rangle[/math]

[math]\lambda \in \mathbb{C}[/math], [math]\lambda \mathcal{I} - \mathcal{A} = (\mu\mathcal{I} - \mathcal{A}) + i\nu\mathcal{I}[/math]

[math]\|(\lambda\mathcal{I}-\mathcal{A})x\| \ge |\nu|\cdot\|x\|[/math]

16 Вещественность спектра ограниченного самосопряженного оператора

Утверждение:
Собственные числа самосопряжённого оператора вещественны

17 Критерий включения в резольвентное множество ограниченного самосопряженного оператора

Теорема:
Пусть [math]\mathcal{A}[/math]— самосопряжённый оператор. Тогда [math]\lambda \in \rho(\mathcal{A}) \iff \exists m \gt 0 : \forall x \in \mathcal{H} : \|(\lambda\mathcal{I}-\mathcal{A})x\| \ge m\|x\|[/math]

18 Критерий включения в спектр ограниченного самосопряженного оператора

Теорема:
Пусть [math]\mathcal{A}[/math]— самосопряжённый оператор. Тогда [math]\lambda \in \sigma(\mathcal{A}) \iff \exists x_n : \|x_n\| = 1 : \|(\lambda\mathcal{I}-\mathcal{A})x_n\| \to 0 [/math]

19 Локализация спектра с.с. оператора посредством чисел m- и m+

Определение:
[math]m_- = \inf\limits_{\|x\| = 1} \langle \mathcal{A}x, x\rangle, m_+ = \sup\limits_{\|x\| = 1} \langle \mathcal{A}x, x \rangle[/math]
Теорема:
Пусть A — самосопряженный оператор

1. [math]\sigma(\mathcal{A}) \subset [m_-; m_+][/math]

2. [math]m_+, m_- \in \sigma(\mathcal{A})[/math]

20 Спектральный радиус ограниченного самосопряженного оператора и его норма

Утверждение:
Если [math]\mathcal{A}[/math]— самосопряжённый оператор, то [math]r_\sigma(\mathcal{A}) = \|\mathcal{A}\|[/math]

21 Теорема Гильберта-Шмидта

Теорема (Гильберт, Шмидт):
Если [math]\mathcal{A}[/math]— самосопряжённый компактный оператор в гильбертовом пространстве [math]\mathcal{H}[/math], а [math]M_{\lambda_i}[/math]— его (оператора) собственные подпространства, то [math]\mathcal{H} = M_{\lambda_1} \oplus M_{\lambda_2} \oplus \cdots \oplus M_{\lambda_n} \oplus \cdots [/math]

22 Разложение резольвенты компактного самосопряженного оператора.

[math]R_\lambda(y) = \sum\limits_{n=1}^\infty \frac{\langle y, \varphi_n\rangle}{\lambda-\lambda_n}\varphi_n[/math]

Теорема Банаха о сжимающем отображении

Определение:
Пусть на замкнутом шаре [math]\overline{V} \subset X[/math], где [math]X[/math] - метрическое пространство, определён оператор [math]A: \overline{V} \subset X \to X[/math]. Он называется сжатием на [math]\overline{V}[/math], если [math]\exists\alpha\in(0; 1)[/math] такой, что для [math]{\forall}x,y \in M[/math] выполняется [math]{\rho(Ax,Ay)\leqslant\alpha{\cdot}\rho(x,y)}[/math].


Теорема:
(Банаха о неподвижной точке) Пусть [math]T : \overline{V} \to \overline{V}[/math] и является сжатием, тогда в этом шаре у оператора [math]T[/math] [math]\exists ![/math] неподвижная точка.

Теорема Банаха о неподвижной точке

Дифференцирование отображений, неравенство Лагранжа.

Рассмотрим [math]T : V_r(x_0) \to Y[/math], где [math]V_r(x_0) \subset X[/math] и, кроме того, [math]X, Y[/math] - нормированные пространства.

Пусть [math]\|\delta x \| \lt r[/math]. Тогда, очевидно, [math]x + \delta x \in V_r(x_0)[/math].

Обозначим [math]\delta T(x_0, \delta x) = T(x_0 + \delta x) - T(x_0)[/math].

Def. Отображение [math]T[/math] называется дифференцируемым по Фреше в точке [math]x_0[/math], если существует оператор [math]A_{x_0} \in L(X,Y)[/math] такой, что [math]\delta T(x_0, \delta x) = A_{x_0}(\delta x) + o(\delta x)[/math], где [math]o(\delta x)[/math] несёт следующий смысл: [math]\frac{ {\|o(\delta x)\|}_Y } {{\| \delta x \|}_X} \to 0[/math].

Обычно, в случае дифференцируемого отображения используют следующее обозначение: [math]T_{x_0}' = A_{x_0}[/math]. Подчеркнем, что [math]T_{x_0}': X \to Y[/math]. Аргументом является "отклонение" некоторой точки [math]x'[/math] от [math]x_0[/math]: [math]x - x_0[/math]. А результат применения оператора: [math]T(x') - T(x_0)[/math] с точностью до [math]o(\delta x = x' - x)[/math].

Lm. (Неравенство Лагранжа) Пусть [math]X, Y[/math] -- нормированные пространства, [math]V[/math] -- некоторый шар в [math]X[/math] и дан оператор [math]T : V \to Y[/math] и на всем этом шаре [math]\exists T'(x)[/math]. Тогда для любых [math]a, b \in V : \|T(b) - T(a)\| \le M {\|b - a\|}_X[/math], где [math]M = sup_{x \in [a, b]}\|T'(x)\|[/math].

Локальная теорема о неявном отображении

Th.(о неявном отображении)

Пусть [math]V[/math] - шар в [math] X, V \subset X[/math], а [math]W \subset Y[/math] - шар в [math]Y[/math], и задан оператор [math]T : {V} \times {W} \rightarrow Y[/math].

Пусть [math]x_0 \in V,\: y_0 \in W,\: T(x_0, y_0) = 0 \in Y[/math].

Пусть [math] \forall x \in V, \forall y \in W \quad \exists T^{'}_y [/math] - дифференциал Фреше, непрерывный как отображение переменных [math]x[/math] и [math]y[/math].

Пусть также [math]T^{'}_{y}(x_0, y_0)[/math] - непрерывно обратим.

Тогда задача о неявном отображении для [math]T(x, y) = 0[/math] c начальным решением [math]T(x_0, y_0) = 0[/math] разрешима в некоторых окрестностях точек [math]x_0, y_0[/math], а именно: для любого [math]x' \in V_{\delta_1}(x_0)[/math] существует единственное [math]y' \in V_{\delta_2}(y_0) : T(x', y') = 0[/math] .

http://neerc.ifmo.ru/wiki/index.php?title=Локальная_теорема_о_неявном_отображении

24 Локальная сходимость метода Ньютона для операторных уравнений

[math] \mathcal{F}(x) = x - \Gamma(x) \mathcal{T} (x)[/math]

Утверждение:
[math] \mathcal{F}'(\overline x) = 0 [/math]

25 Проекторы Шаудера

[math] \forall \varepsilon \gt 0 \exists y_1 \in M, \hdots, y_p \in M [/math] — конечная [math] \varepsilon [/math]-сеть.

Построим следующую функцию: [math] \forall j = 1, \hdots, p, \forall y \in M: [/math]

[math] \mu_j(y) = \begin{cases} 0 & \mbox{if } \| y - y_j \| \ge \varepsilon \\ \varepsilon - \| y - y_j \| & \mbox{if } \| y - y_j \| \lt \varepsilon \end{cases} [/math]

[math] S(y) = \sum\limits_{j=1}^p \mu_j(y) [/math]

Определение:
[math] P_\varepsilon (y) = \sum\limits_{j=1}^p \frac {\mu_j(y)} {S(y)} y_j [/math]проектор Шаудера.


26 Теорема Шаудера о неподвижной точке

Теорема (Шаудер, о неподвижной точке):
Пусть [math] M [/math] — ограниченное замкнутое выпуклое подмножество B-пространства [math] X [/math] и [math] \mathcal{T} [/math] вполне непрерывно отображает [math] M [/math] в себя. Тогда [math] \exists x^* \in M : x^* = Tx^* [/math].

6 О компактности A*, сепарабельность R(A)

Утверждение:
Пусть [math] A [/math] ­— компактный, тогда [math] R(A) [/math] — сепарабельно (то есть, в [math] R(A) [/math] существует счетное всюду плотное подмножество).
Утверждение:
[math]A[/math] — компактен [math]\implies[/math] [math]A^*[/math] — компактен

7 Базис Шаудера, лемма о координатном пространстве

Определение:
Базисом Шаудера в банаховом пространстве [math]X[/math] называется множество его элементов [math]e_1, e_2 \dots e_n \dots[/math] такое, что у любого [math]x[/math] в [math]X[/math] существует единственное разложение [math]x = \sum\limits_{i = 1}^{\infty} \alpha_i e_i[/math].


Определим [math]F = \{(\alpha_1 \dots \alpha_n\dots) \mid \exists x \in X: \sum\limits_{n=1}^\infty \alpha_n e_n \to x \}[/math] — это линейное пространство.

Так как ряд сходится, [math]F[/math] можно превратить в НП, определив норму как [math]\| \alpha \| = \sup\limits_n \left\| \sum\limits_{i=1}^n \alpha_i e_i\right\|[/math].

Утверждение:
Пространство [math] F [/math] относительно этой нормы — банахово.

8 Почти конечномерность компактного оператора

Теорема (почти конечномерность компактного оператора):
Если [math]X[/math] — банахово пространство с базисом Шаудера, [math]A:X \to X[/math] — компактный, то для всех [math]\varepsilon \gt 0[/math] существует разложение оператора [math]A[/math] в сумму двух компактных операторов: [math]A = A_1 + A_2[/math] такое, что:
  1. [math]\operatorname{dim}(R(A_1)) \lt +\infty[/math]
  2. [math]\|A_2\| \lt \varepsilon[/math]

23 Локальная сходимость метода простой итерации

Теорема (Локальная теорема о простой итерации):
Пусть известно, что существует [math] \overline{x}: \mathcal{T}(\overline{x}) = \overline{x} [/math] и [math] \| \mathcal{T}(\overline{x})' \| \le q \lt 1 [/math].

Тогда существует такой шар [math] V_{\delta} (\overline x) [/math], что если [math] x_0 \in V_{\delta} (\overline x) [/math], то:

  • Метод простых итераций корректно определен: [math] \mathcal{T}x_n \in V_{\delta} (\overline x), n \ge 0[/math].
  • [math] x_n \to \overline x [/math]