Теория Гильберта-Шмидта

Материал из Викиконспекты
Версия от 21:01, 3 июня 2013; 194.85.161.2 (обсуждение) (ещё пара теорем)
Перейти к: навигация, поиск
Эта статья находится в разработке!


TODO: Как обычно, это переписанный с выключенным мозгом конспект. Автор не несёт(пока) ответственности за то, что в статье написан антинаучный бред. В параграфе для операторов используется курсивный шрифт ([math]\mathcal{A}[/math], [math]\mathcal{B}[/math]), а для матриц — прямой ([math]A[/math], [math]B[/math]). Во-первых, для того, чтобы различать их, а во-вторых, для красоты. Грустно, что тебе, читатель этого, срать на то, написано ли [math]\mathcal{I}[/math] или [math]I[/math], а хочется только сдать экзамен.

В этом параграфе будем иметь дело с Гильбертовым пространством [math]\mathcal{H}[/math], но над полем [math]\mathbb{C}[/math]

  1. (над [math]\mathbb{R}[/math]): [math]\langle x, y \rangle = \langle y, x \rangle[/math]
  2. (над [math]\mathbb{C}[/math]): [math]\langle x, y \rangle = \overline{\langle y, x \rangle}[/math]

В конечномерном пространстве [math]\mathbb{R}^n = \{\langle x_1, x_2, \ldots, x_n \rangle\} [/math] ([math]x_i \in \mathbb{R}[/math]) скалярное произведение двух векторов определялось как [math]\langle \bar{x}, \bar{y} \rangle = \sum\limits_{k=1}^n x_n y_n[/math]

В [math]\mathbb{C}^n = \{\langle z_1, z_2, \ldots, z_n \rangle\}[/math] ([math]z_i \in \mathbb{C}[/math]) же, [math] \langle \bar{z}, \bar{y} \rangle = \sum\limits_{k=1}^n z_i \overline{y_i}[/math]

Комплексное сопряжение добавлено для того, чтобы выполнялась первая аксиома скалярного произведения: [math]\langle x, x \rangle \ge 0[/math]: [math]\langle \overline{z}, \overline{z} \rangle = \sum\limits_{k=1}^n z_k \overline{z_k} = \sum\limits_{k=1}^n |z_k|^2 \in \mathbb{R}, \gt 0[/math]

Нас будут интересовать только линейные ограниченные операторы [math]\mathcal{A} : \mathcal{H} \to \mathcal{H}[/math]


Определение:
Оператор [math]\mathcal{A}[/math] называется самосопряжённым ([math]\mathcal{A} = \mathcal{A}^*[/math]), если [math]\forall x, y : \langle \mathcal{A}x, y \rangle = \langle x, \mathcal{A}y \rangle[/math]


Посмотрим, что же такое самосопряжённость для конечномерного оператора в [math]\mathbb{C}^n[/math]. В [math]\mathbb{C}^n[/math] линейный оператор представляет из себя матрицу [math]A = \{a_{ij}\}[/math]

Утверждение:
Оператор [math]\mathcal{A} : \mathbb{C}^n \to \mathcal{C}^n[/math] самосопряжён [math]\iff[/math] [math]A = \overline{A^T}[/math]
[math]\triangleright[/math]

[math]Az = \{a_{ij}\} \cdot \left(\begin{array}{c}z_1\\\vdots\\z_n\end{array}\right) = [/math] [math]\left(\sum\limits_{j=1}^n a_{ij} z_j\right)_{i=1..n}[/math]

[math]\langle \mathcal{A}z, y \rangle = \langle Az, y\rangle = [/math] [math]\sum\limits_{i=1}^n (Az)_i \overline{y_i} = [/math] [math]\sum\limits_{i=1}^n\left(\sum\limits_{j=1}^n a_{ij} z_j\right)\overline{y_i} = [/math] [math]\sum\limits_{i,j=1}^n a_{ij} z_j \overline{y_i} = [/math] [math]\sum\limits_{j=1}^n\left(\sum\limits_{i=1}^n a_{ij}\overline{y_i}\right)z_j = [/math] [math]\sum\limits_{j=1}^n\left(\sum\limits_{i=1}^n \overline{\overline{a_{ij}}}\cdot\overline{y_i}\right)z_j = [/math] [math]\sum\limits_{j=1}^n z_j \overline{\left(\sum\limits_{i=1}^n\overline{a_{ij}}y_i\right)} = [/math] [math]\langle z, By \rangle = [/math] [math]\langle z, \overline{A^T} y \rangle[/math]
[math]\triangleleft[/math]


TODO: wtf? [math]\langle \mathcal{A}x, x \rangle = \langle x, \mathcal{A}x[/math], [math]\langle \mathcal{A}x, x \rangle = \overline{\langle x, \mathcal{A}x \rangle}[/math] [math]\Rightarrow[/math] [math]\langle \mathcal{A}x, x\rangle \in \mathbb{R}[/math]

Утверждение:
Собственные числа самосопряжённого оператора вещественны
[math]\triangleright[/math]

Рассмотрим [math]\lambda \in \mathbb{C}[/math], [math]\lambda \mathcal{I} - \mathcal{A} = (\mu\mathcal{I} - \mathcal{A}) + i\nu\mathcal{I}[/math]

[math]\| (\lambda\mathcal{I}-\mathcal{A})x \|^2 = [/math] [math]\langle (\lambda\mathcal{I}-\mathcal{A})x, (\lambda\mathcal{I}-\mathcal{A})x\rangle = [/math] [math]\langle (\mu\mathcal{I}-\mathcal{A})x+i\nu x, (\mu\mathcal{I}-\mathcal{A})x+i\nu x \rangle = [/math] [math]\|(\mu\mathcal{I}-\mathcal{A})x\|^2 + |\nu|^2\cdot\|x\|^2 + \langle(\mu\mathcal{I}-\mathcal{A})x, i\nu x\rangle + \langle i\nu x, (\mu\mathcal{I}-\mathcal{A})x\rangle = [/math] [[math]\mu \in \mathbb{R}[/math], [math]\mathcal{A}[/math]— самосопряжённый [math]\Rightarrow[/math] [math](\mu\mathcal{I}-\mathcal{A})^* = (\mu\mathcal{I}-\mathcal{A})[/math]] [math] = \|(\mu\mathcal{I}-\mathcal{A}x\|^2 + |\nu|^2\cdot\|x\|^2 + (-i\nu)\langle (\mu\mathcal{I}-\mathcal{A})x, x\rangle + i\nu\langle x, (\mu\mathcal{I}-\mathcal{A})x\rangle = [/math] [math]\|(\mu\mathcal{I}-\mathcal{A})x\|^2 + |\nu|^2\cdot\|x\|^2[/math]

Итого: [math]\|(\lambda\mathcal{I}-\mathcal{A})x\| \ge |\nu|\cdot\|x\|[/math]

Утверждение:
Если [math]\mathcal{A}[/math]—самосопряжённый, а [math]\lambda \in \mathbb{C}[/math], то [math]\mathcal{H} = \operatorname{Ker} (\lambda\mathcal{I}-\mathcal{A}) \oplus \operatorname{Cl} R(\lambda\mathcal{I}-\mathcal{A})[/math]
[math]\triangleright[/math]

Доказательство разбивается на два случая: [math]\lambda \in \mathbb{R}[/math] и [math]\lambda \notin \mathbb{R}[/math]

  • Случай 1. [math]\lambda \in \mathbb{R}[/math]

[math]\lambda \in \mathbb{R} \Rightarrow (\lambda\mathcal{I}-\mathcal{A})^* = \lambda\mathcal{I}-\mathcal{A}[/math]

[math]\operatorname{Cl} R(\lambda\mathcal{I}-\mathcal{A}) = (\operatorname{Ker} (\lambda\mathcal{I}-\mathcal{A})^*)^\bot = \operatorname{Ker} (\lambda\mathcal{I}-\mathcal{A})^\bot[/math]

Для [math]\lambda \in \mathbb{R}[/math] проверено

  • Случай 2. [math]\lambda \notin \mathbb{R}[/math]

TODO: тут тоже муть

[math]\overline{\lambda}\mathcal{I}-\mathcal{A} \Rightarrow \operatorname{Ker}(\overline{\lambda}\mathcal{I}-\mathcal{A}) = \{0\}[/math]

[math]\operatorname{Cl} R(\lambda\mathcal{I}-\mathcal{A}) = (\operatorname{Ker} (\lambda\mathcal{I}-\mathcal{A})^*)^\bot = \mathcal{H}[/math] (так как [math]\operatorname{Ker} = \{0\}[/math]
[math]\triangleleft[/math]

Докажем, что если [math]\Im \lambda \ne 0[/math], то [math]\lambda \in \rho(\mathcal{A})[/math]

[math]\lambda = \mu + i\nu[/math], [math]\nu\ne0[/math], [math]\|(\lambda\mathcal{I}-\mathcal{A})x\| \ge |\nu|\cdot\|x\| \gt 0[/math]

[math]\operatorname{Ker} (\lambda\mathcal{I}-\mathcal{A}) = \{0\}[/math], [math]\operatorname{Cl} R(\lambda\mathcal{I}-\mathcal{A}) = \mathcal{H}[/math]

с другой стороны, неравенство [math]\|(\lambda\mathcal{I}-\mathcal{A})x\|\ge|\nu|\cdot\|x\|[/math] даёт априорную оценку [math]y=(\lambda\mathcal{I}-\mathcal{A})x[/math]

[math]R(\lambda\mathcal{I}-\mathcal{A}[/math]— замкнуто

[math]\mathcal{H} = R(\lambda\mathcal{I}-\mathcal{A})[/math]

[math]\lambda\mathcal{I}-\mathcal{A}[/math]— биективен на [math]\mathcal{H}[/math]. [math]\|(\lambda\mathcal{I}-\mathcal{A})x\| \ge |\nu|\cdot\|x\|[/math] гарантирует, что обратный оператор непрерывен. Значит, [math]\lambda \in \rho(\mathcal{A})[/math]
[math]\triangleleft[/math]
Теорема:
Пусть [math]\mathcal{A}[/math]— самосопряжённый оператор. Тогда

1. [math]\lambda \in \rho(\mathcal{A}) \iff \exists m \gt 0 : \forall x \in \mathcal{H} : \|(\lambda\mathcal{I}-\mathcal{H})x\| \ge m\|x\|[/math]

2. [math]\lambda \in \sigma(\mathcal{A}) \iff \exists x_n : \|x_n\| = 1 : \|(\lambda\mathcal{I}-\mathcal{A})x_n\| \to 0 [/math]
Доказательство:
[math]\triangleright[/math]

Замечание: второе свойство означает, что спектр самосопряжённого оператора состоит из почти собственных чисел

Докажем первый пункт

1. [math]\lambda \in \rho(\mathcal{A})[/math]. Требуемое неравенство— непрерывность резольвентного оператора

2. [math]\exists m \gt 0 : \forall x \in \mathcal{H} : \|(\lambda\mathcal{I}-\mathcal{A})x\| \gt m\|x\|[/math] — в силу прошлой теоремы.

Второй пункт — проверить самим. Это просто логическое отрицание первого.
[math]\triangleleft[/math]

Выше мы убедились, что [math]\langle \mathcal{A}x, x \rangle \in \mathbb{R}[/math]


Определение:
[math]m_- = \inf\limits_{\|x\| = 1} \langle \mathcal{A}x, x\rangle[/math] [math]m_+ = \sup\limits_{\|x\| = 1} \langle \mathcal{A}x, x \rangle[/math]


Очевидно, что [math]m_- \le m_+[/math]

[math]\forall x \in \mathcal{H} : x = \|x\| \frac{x}{\|x\|} = \|x\|z[/math], где [math]\|z\| = 1[/math]: [math]\langle \mathcal{A}x, x\rangle = \|x\|^2 \langle\mathcal{A}z, z\rangle \le m_+ \|x\|^2[/math]

Аналогично для [math]m_-[/math]

Теорема:
1. [math]\sigma(\mathcal{A}) \subset [m_-; m_+][/math] 2. [math]m_+, m_- \in \sigma(\mathcal{A})[/math]
Доказательство:
[math]\triangleright[/math]

Пункт 1. Докажем, что из того, что [math]\lambda \gt m_+[/math] следует, что [math]\lambda \in \rho(\mathcal{A})[/math]. Аналогично докажем для [math]m_-[/math]

Нужно проверять только [math]\lambda \in \mathbb{R}[/math]

Пусть [math]\lambda \gt m_+[/math]. Проверим, что выполняется критерий вхождения в [math]\rho(\mathcal{A})[/math] из предыдущей теоремы

[math](\lambda - m_+) \cdot \|x\|^2 =[/math] [math](\lambda - m_+) \langle x, x \rangle =[/math] [math]\langle \lambda x, x\rangle - \langle m_+x, x\rangle \le [/math] [math]\langle \lambda x, x \rangle - \langle \mathcal{A}x, x \rangle = [/math] [math]\langle (\lambda\mathcal{I}-\mathcal{A})x, x\rangle \le[/math] [неравенство Шварца] [math]\le \|(\lambda\mathcal{I}-\mathcal{A})x\| \cdot \|x\|[/math]

Итого: [math](\lambda-m_+)\|x\| \le \|(\lambda\mathcal{I}-\mathcal{A})x\| \Rightarrow \lambda \in \rho(\mathcal{A})[/math]

Пункт 2. Докажем, что [math]m_+ \in \sigma(\mathcal{A})[/math]

Проверим критерий принадлежности спектру из предыдущей теоремы.

[math]m_+ = \sum\limits_{\|x\|=1} \langle \mathcal{A}x, x\rangle[/math]

По определению [math]\sup[/math] подбираются [math]x_n : \|x_n\| = 1[/math], [math]\langle \mathcal{A}x_n, x_n\rangle \to m_+[/math]

[math]\langle \mathcal{A}x, x\rangle \le m_+ \le \langle x, x\rangle \iff \langle (m_+\mathcal{I}-\mathcal{A})x, x\rangle \ge 0[/math]

[math]\mathcal{L} = m_+\mathcal{I} - \mathcal{A}[/math], [math]\mathcal{L}=\mathcal{L}^*[/math]


Определение:
[math][x, y] = \langle \mathcal{L}x, y\rangle[/math]


Так как [math]\langle \mathcal{L}x, x \rangle \ge 0[/math], мгновенно проверяем, что [math][\_, \_][/math] удовлетворяет аксиомам скалярного произведения, а значит, для [math][\_, \_][/math] выполняется неравенство Шварца:

[math]|[x, y]|^2 \le [x, x] \cdot [y, y] [/math]

Надо: [math]\mathcal{L}x_n \to 0[/math]

[math]\langle \mathcal{L}x, x \rangle \to 0[/math]

[math]|\langle \mathcal{L}x, y \rangle|^2 \le \langle\mathcal{L}x, x\rangle \cdot \langle \mathcal{L}y, y \rangle[/math]

Подставим [math]x = x_n[/math], [math]y = \mathcal{L}x_n[/math]:

[math]|\langle\mathcal{L}x_n, \mathcal{L}x_n\rangle| \le[/math] [math]\langle \mathcal{L}x_n, x_n\rangle \cdot \langle \mathcal{L}^2x_n, \mathcal{L}x_n\rangle [/math]

[math]|\langle \mathcal{L}x_n, \mathcal{L}x_n\rangle|^2 = \|\mathcal{L}x_n\|^4[/math], [math]\langle \mathcal{L}x_n, x_n\rangle \to 0[/math], [math]\langle\mathcal{L}^2x_n, \mathcal{L}x_n\rangle \le \|\mathcal{L}^2x_n\|\cdot\|\mathcal{L}x_n\| \le \|\mathcal\|^3 \cdot \|x_n\|^2[=1] = \|\mathcal{L}\|^3 \le M[/math]
[math]\triangleleft[/math]


TODO: на время отпускаю блокировку на статью

TODO: lock