Топологические векторные пространства — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 35: Строка 35:
 
}}
 
}}
  
 +
TODO тут какая-то хурма про уравновешенность
  
 +
{{Теорема
 +
|about=характеристика векторной топологии
 +
|statement=
 +
$\tau$ — векторная топология на $X$ тогда и только тогда, когда:
 +
# $\tau$ инвариантна относительно сдвигов: $\tau + x_0 = \tau$
 +
# существует база из радиальных уравновешенных окрестностей нуля
 +
# $\forall U(0) \exists U_1(0): U_1(0) + U_1(0) \subset U(0)$
 +
|proof=
 +
В прямую сторону:
  
 +
# Рассмотрим отображение $x \mapsto x + x_0$, то есть сдвиг на $x_0$. Это отображение взаимно однозначно, следовательно непрерывно, то есть если $G \in \tau$ (открыто), $G + x_0$ также открыто. То есть получили, что векторная топология инвариантна относительно сдвигов.
 +
# Установим, что можно создать базу окрестностей нуля, составляющую из радиально-уравновешенных множеств. $\lambda x \to 0, x \to 0, \lambda \to 0$, то есть $\forall U(0) \exists \delta > 0, W(0): |\lambda| \ge 0$(TODO тут вроде баг в конспекте) $x \in W(0) \Rightarrow \lambda x \in U(0) \Leftrightarrow \lambda W(0) \subset U(0) \Rightarrow \bigcup\limits_{|\lambda| < \delta} \lambda W(0) \subset U(0)$, где $\lambda W(0)$ — уравновешено и окрестность 0.
 +
#: Для радиальности: $\forall x_0 \in X, \lambda \to 0, \lambda x_0 \to 0 x_0 = 0 \Rightarrow \forall U(0) \exists \delta > 0: |\lambda| < \delta, \lambda x_0 \in U(0)$. $x_0 \in {1 \over \lambda} U(0), |\lambda| \le \delta, \left| {1 \over \lambda} \right| \ge {1 \over \delta}$, то есть $U(0)$ поглощает $x_0$.
 +
# $x + y \to 0, x, y \to 0 \forall U(0) \exists U_1(0) \Rightarrow U_1(0) + U_1(0) \subset U(0)$.
  
 +
В обратную сторону, то есть если соблюдаются эти три свойства, в этой топологии линейные операции непрерывны:
  
 +
Непрерывность сложения:
 +
*: Вспомогательный факт: если $x \to x_0$, то $x - x_0 \to 0$, то есть $x$ представимо как $ x = x_0 + y, y \to 0$.
 +
*: Если $x \to x_0, y \to y_0$. $x = x_0 + u, y = y_0 + v, u \to 0, v \to 0$. $x + y = (x_0 + y_0) + (u + v)$, где по свойствам предела $(u + v) \to 0$, что и требуется.
 +
 +
Непрерывность умножения:
 +
*: TODO что-то длинное и страшное
 +
}}
 +
 +
Любое НП является частным случаем ТВП. Обратное в общем случае неверно, в связи с чем возникает вопрос о том, в каком случае ТВП можно нормировать. Ответ на него дает понятие функционала Минковского.
  
  

Версия 16:58, 3 января 2013

Эта статья находится в разработке!

<wikitex>

Рассмотрим множество $f: [0, 1] \to \mathbb{R}$. Множество таких функций образуют линейное пространство. Если определять предел в поточечном смысле, операции сложения и умножения на число в этом пространстве непрерывны. Мотивация введения топологических векторных пространств — обобщение этой ситуации на абстрактный случай.


Определение:
Топологическое векторное пространство — линейное пространство, наделенной такой топологией, что операции сложения векторов и умножения на скаляр в ней непрерывны, то есть:
  • непрерывность умножения на скаляр: $\alpha x \to \alpha_0 x_0$, если $\alpha \to \alpha_0$, $x \to x_0$. Означает, что для любой окрестности $U(\alpha_0 x_0)$ существует $ \varepsilon > 0$ и существует $U(x_0):


В ситуации $f: [0, 1] \to \mathbb{R}$, когда предел определен поточечно, если $\forall 0 \le t_1 < \dots < t_n \le 1, \forall \varepsilon_1 \dots \varepsilon_n > 0$ рассмотреть $U_{t_1 \dots t_n} (\varepsilon_1 \dots \varepsilon _n) = \{ f \mid \forall j: |f(t_j)| < \varepsilon_j \}$, объявить их окрестностями нулевой функции — в такой базе окрестности нуля функции будут непрерывны и предел будет поточечным.

Как охарактеризовать векторную топологию? Пусть $X$ — линейное пространство, $A, B \subset X \Rightarrow A + B = \{ a + b \mid a \in A, b \in B\}$(TODO: что бы значила тут стрелка вправо?), $\alpha A = \{ \alpha a \mid a \in A \}. Заметим, что $2 A \subset A + A$, но обратное не верно.


Определение:
$A$ закругленное/уравновешенное, если $\forall \lambda:


Определение:
$A$ поглощает $B$, если $\exists \lambda_0 > 0: \forall \lambda:


Определение:
$A$ радиальное, если оно поглощает любую конечную систему точек. Для проверки радиальности достаточно проверить поглощение каждой конкретной точки.


Определение:
$A$ выпуклое, если $\forall x, y \in A \forall 0 \le \alpha \le 1: \alpha x + \beta y \in A$, то есть множество содержит отрезок, соединяющий любые два его элемента.


TODO тут какая-то хурма про уравновешенность

Теорема (характеристика векторной топологии):
$\tau$ — векторная топология на $X$ тогда и только тогда, когда:
  1. $\tau$ инвариантна относительно сдвигов: $\tau + x_0 = \tau$
  2. существует база из радиальных уравновешенных окрестностей нуля
  3. $\forall U(0) \exists U_1(0): U_1(0) + U_1(0) \subset U(0)$
Доказательство:
[math]\triangleright[/math]

В прямую сторону:

  1. Рассмотрим отображение $x \mapsto x + x_0$, то есть сдвиг на $x_0$. Это отображение взаимно однозначно, следовательно непрерывно, то есть если $G \in \tau$ (открыто), $G + x_0$ также открыто. То есть получили, что векторная топология инвариантна относительно сдвигов.
  2. Установим, что можно создать базу окрестностей нуля, составляющую из радиально-уравновешенных множеств. $\lambda x \to 0, x \to 0, \lambda \to 0$, то есть $\forall U(0) \exists \delta > 0, W(0):
[math]\triangleleft[/math]

Любое НП является частным случаем ТВП. Обратное в общем случае неверно, в связи с чем возникает вопрос о том, в каком случае ТВП можно нормировать. Ответ на него дает понятие функционала Минковского.



</wikitex>