Редактирование: Триангуляция полигонов (ушная + монотонная)

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 14: Строка 14:
 
|proof=
 
|proof=
 
[[Файл:Proof theorem.jpg|200px|thumb|right|Два случая в доказательстве теоремы]]
 
[[Файл:Proof theorem.jpg|200px|thumb|right|Два случая в доказательстве теоремы]]
Доказательство ведётся индуктивно по <tex>n</tex>. При <tex>n = 3</tex> теорема тривиальна. Рассмотрим случай при <tex>n > 3</tex> и предположим, что теорема выполняется при всех <tex>m < n</tex>. Докажем существование диагонали в многоугольнике <tex>P</tex>. Возьмём самую левую по оси <tex>x</tex> вершину <tex>v</tex> многоугольника <tex>P</tex> и две смежных с ней вершины <tex>u</tex> и <tex>w</tex>. Если отрезок  <tex>uw</tex> принадлежит внутренней области <tex>P</tex> — мы нашли диагональ. В противном случае, во внутренней области треугольника <tex>\Delta uwv</tex> или на самом отрезке <tex>uw</tex> содержится одна или несколько вершин <tex>P</tex>. Выберем из них наиболее удалённую от <tex>uw</tex> вершину <tex>v'</tex>. Отрезок, соединяющий <tex>v</tex> и <tex>v'</tex> не может пересекать ребро <tex>P</tex>, поскольку в противном случае одна из вершин этого ребра будет располагаться дальше от <tex>uw</tex>, чем <tex>v'</tex>. Это противоречит условию выбора <tex>v'</tex>. В итоге получаем, что <tex>v'v</tex> — диагональ.  
+
Доказательство ведётся индуктивно по <tex>n</tex>. При <tex>n = 3</tex> теорема тривиальна. Рассмотрим случай при <tex>n > 3</tex> и предположим, что теорема выполняется при всех <tex>m < n</tex>. Докажем существование диагонали в многоугольнике <tex>P</tex>. Возьмём самую левую по оси <tex>x</tex> вершину <tex>v</tex> многоугольника <tex>P</tex> и две смежных с ней вершины <tex>u</tex> и <tex>w</tex>. Если отрезок  <tex>uw</tex> принадлежит внутренней области <tex>P</tex> — мы нашли диагональ. В противном случае, во внутренней области треугольника <tex>\Delta uwv</tex> или на самом отрезке <tex>uw</tex> содержится одна или несколько вершин <tex>P</tex>. Выберем самую наиболее далеко отстоящую от <tex>uw</tex> вершину <tex>v'</tex>. Отрезок, соединяющий <tex>v</tex> и <tex>v'</tex> не может пересекать сторон <tex>P</tex>, поскольку в противном случае одна из вершин это отрезка будет располагаться дальше от <tex>uw</tex>, чем <tex>v'</tex>. Это противоречит условию выбора <tex>v'</tex>. В итоге получаем, что <tex>v'v</tex> — диагональ.  
 
Любая диагональ делит <tex>P</tex> на два многоугольника <tex>P_1</tex> и <tex>P_2</tex>. За <tex>m_1</tex> и <tex>m_2</tex> обозначим количество вершин в <tex>P_1</tex> и <tex>P_2</tex> соответственно. <tex>m_1 < n</tex> и <tex>m_2 < n</tex>, поэтому по предположению индукции у <tex>P_1</tex> и <tex>P_2</tex> существует триангуляция, следовательно и у <tex>P</tex> она существует.
 
Любая диагональ делит <tex>P</tex> на два многоугольника <tex>P_1</tex> и <tex>P_2</tex>. За <tex>m_1</tex> и <tex>m_2</tex> обозначим количество вершин в <tex>P_1</tex> и <tex>P_2</tex> соответственно. <tex>m_1 < n</tex> и <tex>m_2 < n</tex>, поэтому по предположению индукции у <tex>P_1</tex> и <tex>P_2</tex> существует триангуляция, следовательно и у <tex>P</tex> она существует.
  

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)

Шаблоны, используемые на этой странице: