Редактирование: Триангуляция полигонов (ушная + монотонная)

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 66: Строка 66:
 
[[Файл:Proof_lemma.jpg|450px]]
 
[[Файл:Proof_lemma.jpg|450px]]
  
Если же <tex>r = p</tex> (случай '''(b)''' на рисунке), начём опять двигаться по сторонам <tex>P</tex> теперь уже вниз. Как и в предыдущем случае найдётся некоторая точка <tex>r'</tex>, которая будет результатом пересечения <tex>l</tex> и <tex>P</tex>. При этом <tex>r' \neq p</tex>, в противном случае <tex>l</tex> будет пересекать <tex>P</tex> только два раза, что противоречит выбору <tex>l</tex>. Аналогично предыдущему случаю, выберем теперь самую низкую точку, которую мы достигли во время движения по сторонам P. Она будет merge вершиной.
+
Если же <tex>r = p</tex> (случай '''(b)''' на рисунке), начём опять двигаться по сторонам <tex>P</tex> теперь уже вниз. Как и в предыдущем случае найдётся некоторая точка <tex>r'</tex>, которая будет результатом пересечения <tex>l</tex> и <tex>P</tex>. При этом <tex>r' \neq p</tex>, в противном случае <tex>l</tex> будет пересекать <tex>P</tex> только два раза, то есть <tex>P</tex> будет <tex>y</tex>-монотонным, что противоречит нашему предположению. Аналогично предыдущему случаю, выберем теперь самую низкую точку, которую мы достигли во время движения по сторонам P. Она будет merge вершиной.
 
}}
 
}}
  

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)

Шаблоны, используемые на этой странице: