Троичный поиск — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Время работы)
(Алгоритм)
Строка 9: Строка 9:
 
Пусть функция <tex>f(x)</tex> на отрезке <tex>[l, r]</tex> имеет минимум, и мы хотим найти точку <tex>x_{min}</tex>, в которой он достигается.
 
Пусть функция <tex>f(x)</tex> на отрезке <tex>[l, r]</tex> имеет минимум, и мы хотим найти точку <tex>x_{min}</tex>, в которой он достигается.
  
Посчитаем значения функции в точках <tex dpi = "150"> a = l + \frac{(r-l)}{3} </tex> и <tex dpi = "150"> b = l + \frac{2(r-l)}{3} </tex>.
+
Посчитаем значения функции в точках <tex> a = l + </tex>  <tex dpi = "150"> \frac{(r-l)}{3} </tex> и <tex> b = l + </tex>  <tex dpi = "150"> \frac{2(r-l)}{3} </tex>.
  
 
Так как в точке <tex>x_{min}</tex> минимум, то на отрезке <tex>[l, x_{min}]</tex> функция убывает, а на <tex>[x_{min}, r]</tex> {{---}} возрастает, то есть
 
Так как в точке <tex>x_{min}</tex> минимум, то на отрезке <tex>[l, x_{min}]</tex> функция убывает, а на <tex>[x_{min}, r]</tex> {{---}} возрастает, то есть

Версия 12:23, 22 мая 2014

Троичный поиск (ternary search, тернарный поиск) — метод поиска минимума или максимума функции на отрезке.

Алгоритм

Пример. [math]f(a) \lt f(b) \Rightarrow x_{min} \in [l, b][/math]

Рассмотрим этот алгоритм на примере поиска минимума (поиск максимума аналогичен).

Пусть функция [math]f(x)[/math] на отрезке [math][l, r][/math] имеет минимум, и мы хотим найти точку [math]x_{min}[/math], в которой он достигается.

Посчитаем значения функции в точках [math] a = l + [/math] [math] \frac{(r-l)}{3} [/math] и [math] b = l + [/math] [math] \frac{2(r-l)}{3} [/math].

Так как в точке [math]x_{min}[/math] минимум, то на отрезке [math][l, x_{min}][/math] функция убывает, а на [math][x_{min}, r][/math] — возрастает, то есть

[math] \forall x', x'' \in [l, r]: \\ l \lt x' \lt x'' \lt x_{min} \Rightarrow f(l) \gt f(x') \gt f(x'') \gt f(x_{min}) \\ x_{min} \lt x' \lt x'' \lt r \Rightarrow f(x_{min}) \lt f(x') \lt f(x'') \lt f(r) [/math].

Значит если [math]f(a) \lt f(b)[/math], то [math]x_{min} \in [l, b][/math], аналогично из [math]f(a) \gt f(b)[/math] следует [math] x_{min} \in [a, r][/math].

Тогда нам нужно изменить границы поиска и искать дальше, пока не будет достигнута необходимая точность, то есть [math] r-l \lt \varepsilon [/math].

Псевдокод

Рекурсивный вариант:

ternarySearchMin(f, left, right, eps) 
    if (right - left < eps)
        return (left + right) / 2
    a = (left * 2 + right) / 3
    b = (left + right * 2) / 3
    if (f(a) < f(b))
        return ternarySearchMin(f, left, b, eps)
    else
        return ternarySearchMin(f, a, right, eps)

Итеративный вариант:

ternarySearchMin(f, left, right, eps) 
    while (right - left > eps) 
        a = (left * 2 + right) / 3
        b = (left + right * 2) / 3
        if (f(a) < f(b))
            right = b
        else
            left = a
    return (left + right) / 2

Время работы

Так как на каждой итерации мы считаем два значения функции и уменьшаем область поиска в полтора раза, пока [math] r - l \gt \varepsilon[/math], то время работы алгоритма составит [math]2 \log_{\frac32} \left(\frac{r - l}{\varepsilon}\right)[/math]

См. также

Литература

  • Дональд Кнут — Искусство программирования. Том 3. Сортировка и поиск. / Knuth D.E. — The Art of Computer Programming. Vol. 3. Sorting and Searching.