Уменьшение ошибки в классе RP, сильное и слабое определение
Определение классов
Множество языков RP определяется следующим образом:
Определим множества языков
и :
В приведенных определениях вероятностная машина Тьюринга, время работы которой в худшем случае составляет полином от длины входа.
— некий полином, а —В классе
ослаблено ограничение на вероятность ошибки ответа, а в классе усилено. Соответственно называется слабым определением класса , а — сильным.Доказательство эквивалентности определений
Включение
очевидно, следовательно осталось доказать обратное включение . Доказательство данного утверждения проводится с помощью метода уменьшения ошибки в классе .- Докажем включение
Выясним, сколько раз требуется запустить машину Тьюринга
из , для того, чтобы вероятность ошибки была меньше . Запустим машину раз, тогда вероятность ошибки составит . Получим неравенство:Логарифмируя, сведем к следующему:
Разложив логарифм в левой части в ряд, получим:
Откуда
, где — длина входа. То есть при , удовлетворяющем полученному неравенству, вероятность ошибки не будет превышать , а значит .- Докажем включение
Доказательство проводится аналогично приведенному в первой части. Запустим машину
из раз. С учетом ограничения, введенного в определении класса , получим неравенство: .Прологарифмировав и сократив обе части неравенства на
, получим неравенство: . То есть машина , запущенная раз, выдает неверный ответ с вероятностью, удовлетворяющей определению класса , а значит .Эквивалентность определений класса
доказана.