Редактирование: Условная вероятность

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 15: Строка 15:
 
Пусть имеется <tex>12</tex> шариков, из которых <tex>5</tex> {{---}} чёрные, а <tex>7</tex> {{---}} белые. Пронумеруем чёрные шарики числами от <tex>1</tex> до <tex>5</tex>, а белые {{---}} от <tex>6</tex> до <tex>12</tex>. Случайным образом из мешка достаётся шарик. Требуется посчитать вероятность того, что шарик чёрный, если известно, что он имеет чётный номер.
 
Пусть имеется <tex>12</tex> шариков, из которых <tex>5</tex> {{---}} чёрные, а <tex>7</tex> {{---}} белые. Пронумеруем чёрные шарики числами от <tex>1</tex> до <tex>5</tex>, а белые {{---}} от <tex>6</tex> до <tex>12</tex>. Случайным образом из мешка достаётся шарик. Требуется посчитать вероятность того, что шарик чёрный, если известно, что он имеет чётный номер.
  
Обозначим за <tex>A</tex> событие "достали чёрный шар" и за <tex>B</tex> событие "достали шар с чётным номером". Тогда <tex>P(B) = \dfrac{1}{2}</tex>, так как ровно половина шариков имеют чётный номер, а <tex>P(A \cap B) = \dfrac{2}{12} = \dfrac{1}{6}</tex>, так как только два шарика из двенадцати являются чёрными и имеют чётным номер одновременно.
+
Обозначим за <tex>A</tex> событие "достали чёрный шар" и за <tex>B</tex> событие "достали шар с чётным номером". Тогда <tex>P(B) = \dfrac{1}{2}</tex>, т. к. ровно половина шариков имеют чётный номер, а <tex>P(A \cap B) = \dfrac{2}{12} = \dfrac{1}{6}</tex>, т. к. только два шарика из двенадцати являются чёрными и имеют чётным номер одновременно.
  
 
Тогда по определению вероятность случайно вытащенного шарика с чётным номером оказаться чёрным равна <tex>{P}(A \mid B) = \dfrac{{P}(A\cap B)}{{P}(B)} = \dfrac{1}{3}</tex>
 
Тогда по определению вероятность случайно вытащенного шарика с чётным номером оказаться чёрным равна <tex>{P}(A \mid B) = \dfrac{{P}(A\cap B)}{{P}(B)} = \dfrac{1}{3}</tex>

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)

Шаблоны, используемые на этой странице: