Участник:Quarter
Распределение степеней вершин
Определение: |
Распределение степеней вершин случайного графа - это функция | , определённая на как , то есть выражающая вероятность того, что вершина имеет степень . Другими словами, распределение степеней графа определяется как доля узлов, имеющих степень .
Пример: |
Если есть в общей сложности | узлов в графе и из них имеют степень , то . Другими словами, равно вероятности того, что отдельно взятая вершина имеет степень .
Утверждение: |
Дан случайный граф в биноминальной модели. Тогда для него распределение степеней вершин
|
Действительно, если вероятность появления ребра схема Бернулли). Таких наборов рёбер у одной вершины всего , откуда получаем искомое распределение. | , то вероятность появления ровно рёбер у вершины равна (
Распределение максимальной степени вершин
Определение: |
Распределение максимальной степени вершин случайного графа - это функция | , определённая на как , то есть выражающая вероятность того, что максимальная степень вершины равна .
Утверждение: |
Будем выводить формулу для через распределение степеней вершин .Максимальная степень вершины равна тогда и только тогда, когда не существует вершины степенью больше . Таким образом, нужно посчитать вероятность события .
- вероятность того, что вершина имеет степень . Тогда вероятность того, что имеет одну из степеней - . Нам нужно обратное событие, при наступлении которого вершина имеет степень больше . Его вероятность равна . События независимы, поэтому получаем: |