Участник:Kabanov — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Kd-tree)
(Делоне)
Строка 1: Строка 1:
[[Файл:Kd-tree.png | 400px | right]]
+
{{nohate}}
 +
== Определение ==
 +
{{Определение
 +
|definition=
 +
'''Подразбиение Делоне множества точек''' — такое разбиение выпуклой оболочки множества точек на множество выпуклых фигур, что в окружности, описанной вокруг любой из фигур, не  находится никаких точек из множества.
 +
}}
 +
{{Определение
 +
|definition=
 +
'''Триангуляция Делоне множества точек''' — триангуляция, являющаяся подразбиением Делоне.
 +
}}
 +
 
 +
== Существование триангуляции Делоне ==
 +
{{Лемма
 +
|about=1
 +
|statement=
 +
Окружность, спроецированная на параболоид, находится в одной плоскости. Все точки, лежащие внутри окружности, будут лежать под этой плоскостью. Точки, лежащие вне окружности, будут лежать над плоскостью.
 +
}}
 +
{{Теорема
 +
|statement=
 +
Подразбиение Делоне существует, причём для каждого набора точек оно единственно.
 +
|proof=
 +
Спроецируем все точки на параболоид и построим выпуклую оболочку.
 +
 
 +
Все грани выпуклой оболочки окажутся внутри параболоида из-за его выпуклости. При этом точки лежат на параболоиде. Поэтому не найдётся точек, которые будут лежать за гранями выпуклой оболочки. То есть все точки, спроецированные на параболоид, будут принадлежать выпуклой оболочке.
 +
 
 +
По лемме 1 очевидно, что внутри окружностей, описанных вокруг проекций граней выпуклой оболочки, не будет лежать никаких точек. Значит, проекции граней — фигуры подразбиения Делоне. Значит, такое подразбиение существует.
 +
 
 +
Из единственности выпуклой оболочки следует, что такое подразбиение единственно.
 +
}}
  
'''K-d дерево''' (short for k-dimensional tree) {{---}} статическая структура данных для хранения точек в <tex>k</tex>-мерном пространстве. Позволяет отвечать на запрос, какие точки лежат в данном прямоугольнике.
+
== Критерий Делоне для рёбер ==
Строится это дерево следующим образом: разобьём все точки вертикальной прямой так, чтобы слева (нестрого) и справа (строго) от неё было примерно поровну точек (для  этого посчитаем медиану первых координат). Получим подмножества для левого и правого ребёнка. Далее построим для этих подмножеств деревья, но разбивать будем уже не вертикальной, а горизонтальной прямой (для этого посчитаем медиану вторых координат). И так далее (будем считать, что <tex>k = 2</tex> (случай бОльших размерностей обрабатывается аналогично), поэтому на следующем уровне вновь будем разбивать вертикальными прямыми).
+
{{Определение
 +
|definition='''Критерий Делоне для ребра''': на ребре можно построить такую окружность, что внутри неё не будет лежать никаких точек.
 +
}}
 +
{{Лемма
 +
|about=2
 +
|statement=Триангуляции Делоне принадлежат те и только те рёбра (с поправкой на точки, лежащие на одной окружности), которые удовлетворяют критерию Делоне.
 +
|proof=
 +
[[Файл:Good edges.png|400px|thumb|right|Для рёбер AB и CD выполняется критерий Делоне, на них построены окружности]]
 +
То, что для рёбер, принадлежащих триангуляции Делоне, выполняется критерий Делоне для рёбер, очевидно (вокруг каждого ребра можно описать окружность, проходящую через противолежащую ему точку в смежном треугольнике, причём в окружности не будет никаких точек по критерию Делоне).
  
''Замечание: проблемы могут возникнуть, если много точек имеют одинаковую координату, тогда разбить примерно поровну не получится (почти все точки будут лежать на медиане и попадут в левую часть). Лучший способ борьбы с этим {{---}} не вспоминать о данной проблеме совсем. Но вообще с этим борются, используя composite numbers, то есть сравнивая ещё и по другой (другим) координате.''
+
Докажем, что если для ребра выполняется критерий Делоне, то оно принадлежит триангуляции Делоне.
  
Реализовывать построение можно рекурсивно с помощью функции <tex>BuildKdTree(P, Depth)</tex>, принимающей множество точек и глубину. В зависимости от остатка при делении на размерность (при <tex> k = 2 </tex> от чётности размерности) сплитим множество на два подмножества и делаем рекурсивные вызовы. Для лучшего понимания приведём псевдокод:
+
Предположим, что это ребро (назовём его <tex>AB</tex>) не принадлежит триангуляции Делоне. Тогда существует пересекающее его ребро <tex>CD</tex>, принадлежащее триангуляции. Рассмотрим четырёхугольник <tex>ACBD</tex>. Точки <tex>C</tex> и <tex>D</tex> лежат вне окружности, построенной на <tex>AB</tex> как на хорде, поэтому сумма углов <tex>C</tex> и <tex>D</tex> меньше 180°. Аналогичным образом доказывается, что сумма углов <tex>A</tex> и <tex>B</tex> тоже меньше 180°. Значит, сумма углов четырёхугольника <tex>ACBD</tex> меньше 360°, что невозможно. Противоречие. Значит, ребро <tex>AB</tex> принадлежит триангуляции Делоне.
<code>
+
}}
BuildKdTree(P, Depth)
 
//Input. A set of points P and the current depth Depth.
 
//Output. The root of a kd-tree storing P.
 
if P contains only one point
 
    return a leaf storing this point
 
else if depth is even
 
    Split P into two subsets <tex>P_1</tex> and <tex>P_2</tex> with a vertical line <tex>l</tex> through the median x-coordinate of the points in P
 
else
 
    Split P into two subsets <tex>P_1</tex> and <tex>P_2</tex> with a horizontal line <tex>l</tex> through the median y-coordinate of the points in P.  
 
<tex>V_{left}</tex> <- BuildKdTree(<tex>P_1</tex>, Depth + 1)
 
<tex>V_{right}</tex> <- BuildKdTree(<tex>P_2</tex>, Depth + 1)
 
Create a node v storing <tex>l</tex>, make <tex>V_{left}</tex> the left child of v, and make <tex>V_{right}</tex> the right child of v.
 
return v
 
</code>
 
  
 +
== Локальный критерий Делоне ==
 +
{{Определение
 +
|definition='''Локальный критерий Делоне''': для пары треугольников, которым принадлежит это ребро, выполняется критерий Делоне (то есть вершина, противолежащая ребру в одном треугольнике, не лежит в окружности, описанной вокруг другого, и наоборот).
 +
}}
 +
Будем называть '''хорошими''' те рёбра, для которых выполняется локальный критерий Делоне.
 
{{Лемма
 
{{Лемма
|about=
+
|about=3
О времени построения
+
|id=fliplemma
 
|statement=
 
|statement=
Построение выполняется за <tex>O(n \log n)</tex>.
+
Из двух рёбер, которые можно провести для пары треугольников, как минимум одно хорошее.
 
|proof=
 
|proof=
Время построения обозначим <tex>T(n)</tex>. Поиск медианы можно сделать за линейное время, поэтому достаточно очевидно, что:
+
[[Файл:Bad edges.png|400px|thumb|right|Рёбра AB и BC плохие]]
 +
Предположим, что это не так, то есть оба ребра (назовём их <tex>AB</tex> и <tex>CD</tex>) плохие. Рассмотрим четырёхугольник <tex>ACBD</tex> и окружность, описанную вокруг треугольника <tex>ABC</tex>. Точка <tex>D</tex> лежит внутри этой окружности, значит, сумма углов <tex>C</tex> и <tex>D</tex> больше 180°. Аналогично доказывается, что сумма углов <tex>A</tex> и <tex>B</tex> больше 180°. Значит, сумма углов четырёхугольника <tex>ACBD</tex> больше 360°, что невозможно.
 +
}}
 +
{{Лемма
 +
|about=4
 +
|statement=
 +
Если для всех рёбер выполняется локальный критерий Делоне, то выполняется и глобальный критерий Делоне.
 +
|proof=
 +
[[Файл:Bad triangle.png|400px|thumb|right|Все рёбра треугольника хорошие, но описанная окружность содержит точки]]
 +
Предположим, что это не так, то есть все рёбра хорошие, но существуют треугольники, описанная окружность которых содержат какие-либо точки триангуляции. Возьмём какую-либо конфликтную точку <tex>E</tex>. Рассмотрим такой треугольник <tex>ABC</tex> из тех, в описанную окружность которых попадает <tex>E</tex>, что угол <tex>BEC</tex> максимален, если <tex>BC</tex> — ближайшая к точке <tex>E</tex> сторона. Пусть треугольник <tex>BDC</tex> — смежный с <tex>ABC</tex>.
 +
 
 +
Докажем, что точка <tex>E</tex> лежит в окружности, описанной вокруг <tex>BDC</tex>. Предположим, что это не так. Посмотрим на окружность, описанную вокруг треугольника <tex>ABC</tex>: <tex>\angle BAC + \angle BEC > 180^\circ</tex> и <tex>\angle BAC + \angle BDC < 180^\circ</tex>. Если точка <tex>E</tex> не лежит в окружности, описанной вокруг треугольника <tex>BDC</tex>, то <tex>\angle BEC < \angle BDC</tex>, что противоречит предыдущим двум неравенствам.
  
<tex>T(n) = O(1)</tex> if <tex>n = 1</tex>.
+
Очевидно, что угол <tex>BED</tex> больше, чем угол <tex>BEC</tex>. При этом точка <tex>E</tex> лежит в окружности, описанной вокруг <tex>BDC</tex>. Значит, при выборе треугольника нужно было взять не <tex>ABC</tex>, а <tex>BDC</tex>. Противоречие.
 +
}}
  
<tex>T(n) = O(n) + 2 \cdot T(n / 2)</tex>, otherwise.
+
== Динамическая триангуляция ==
 +
{{Определение
 +
|definition=
 +
Рассмотрим пару смежных треугольников. Рёбра этих треугольников образуют четырёхугольник с проведённой в нём диагональю. Операция замены этой диагонали на другую называется '''flip''' ('''флип''').
 +
}}
 +
[[Файл:Flip.png|400px|thumb|right|Красное ребро — до флипа, синее — после]]
 +
Из [[#fliplemma|леммы 3]] следует, что если ребро плохое, то флип сделает его хорошим.
 +
{{Лемма
 +
|about=5
 +
|statement=Флип плохого ребра уменьшает разность объёмов параболоида и триангуляции, спроецированной на него.
 +
|id=volumelemma
 +
|proof=
 +
Рассмотрим два таких смежных треугольника, что ребро между ними является плохим. Спроецируем их на параболоид. Четыре точки, принадлежащие смежным треугольникам, при проекции на параболоид образуют тетраэдр.
  
Решением этого является <tex>T(n) = O(n \log n)</tex>.
+
Проведём через какой-нибудь из двух треугольников плоскость. Вершина, противолежащая основанию тетраэдра, являющегося этим треугольником, лежит ниже этой плоскости (так как не выполняется локальный критерий Делоне), то есть тетраэдр лежит ниже тела, образующегося при проекции всей триангуляции на параболоид.
  
Также стоит отметить, что можно и не искать медиану за линейное время, а просто посортить все точки в самом начале и дальше использовать это. В реализации попроще, асимптотика та же.
+
После флипа станет выполняться локальный критерий Делоне, то есть тело станет включать в себя тетраэдр. Поэтому после флипа плохого ребра объём тела увеличится на объём этого тетраэдра.
 +
}}
 +
{{Лемма
 +
|about=6
 +
|statement=
 +
Флипами можно достичь хорошей триангуляции за конечное время.
 +
|proof=
 +
Всего триангуляций заданного множества точек конечное число, и среди них есть триангуляция Делоне. Последовательность флипов плохих рёбер триангуляции образует такую последовательность триангуляций, что разность объёмов параболоида и спроецированной на него триангуляции убывает ([[#volumelemma|по лемме 5]]). Эта последовательность конечна (при этом последней в последовательности является триангуляция Делоне), значит, число флипов, требуемых для достижения триангуляции Делоне, тоже конечно.
 
}}
 
}}
 
 
{{Лемма
 
{{Лемма
|about=
+
|about=7
О занимаемой памяти
 
 
|statement=
 
|statement=
K-d дерево требует <tex>O(n)</tex> памяти.
+
Если в триангуляцию Делоне вставить точку в некоторый треугольник и соединить его вершины с этой точкой, то получившиеся рёбра будут хорошими.
 +
|id=newedgeslemma
 
|proof=
 
|proof=
Высота дерева, очевидно, логарифмическая, а листьев всего <tex>O(n)</tex>. Поэтому будет <tex>O(n)</tex> вершин, каждая занимает <tex>O(1)</tex> памяти.
+
[[Файл:Good edge.png|400px|thumb|right|Точка V вставлена в треугольник ABC]]
 +
Предположим, точка была вставлена не на ребро. Рассмотрим любое из рёбер — пусть это будет ребро <tex>VC</tex>. Проведём окружность, описывающую треугольник <tex>ABC</tex>. По критерию Делоне в ней не будет никаких точек триангуляции. На ребре <tex>VC</tex> можно построить окружность, изнутри касающуюся окружности, описанной вокруг треугольника. В ней тоже нет никаких точек. Значит, для <tex>VC</tex> выполняется критерий Делоне для рёбер, значит, ребро должно принадлежать триангуляции с добавленной точкой <tex>V</tex>, значит, оно хорошее.
 +
 
 +
Случай, когда точка вставляется на ребро, рассматривается аналогично.
 
}}
 
}}
 +
=== Вставка точки ===
 +
==== Вставка точки, лежащей внутри триангуляции ====
 +
[[Файл:Insert in triangle.png|200px|thumb|left|Вставка в треугольник]]
 +
[[Файл:Insert on edge.png|200px|thumb|right|Вставка на ребро]]
  
By the way, если считать <tex>k</tex> константой, то и для случая большей размерности эти оценки будут такими же (доказывается аналогично).
+
Для начала локализуемся: поймём, в каком фейсе лежит точка (или на каком ребре).
  
== Запрос ==
+
Если точка лежит внутри фейса, добавляем три ребра, сам фейс превращаем в один из новых смежных с вставляемой точкой и добавялем ещё два фейса.
Пусть нам поступил какой-то прямоугольник <tex>R</tex>. Нужно вернуть все точки, которые в нём лежат. Будем это делать рекурсивно, получая на вход корень дерева и сам прямоугольник <tex>R</tex>. Обозначим область, соответствующую вершине <tex>v</tex>, как <tex>region(v)</tex>. Она будет прямоугольником, одна или более границ которого могут быть на бесконечности. <tex>region(v)</tex> можно явно хранить в узлах, записав при построении, или же считать при рекурсивном спуске. Если корень дерева является листом, то просто проверяем одну точку и при необходимости репортим её. Если нет, то смотрим пересекают ли регионы детей прямоугольник <tex>R</tex>. Если да, то запускаемся рекурсивно от такого ребёнка. При этом, если регион полностью содержится в <tex>R</tex>, то можно репортить сразу все точки из него. Тем самым мы, очевидно, вернём все нужные точки и только их. Чтобы стало совсем понятно, приведём псевдокод:
 
  
<code>
+
Если же точка лежит на ребре, два смежных с ребром фейса превращаем в два новых, добавляем ещё два, а так же превращаем ребро, на которое вставляется точка, в ребро, которое заканчивается в этой точке, и вставляем три новых.
SearchKdTree(v, R)
 
//Input. The root of (a subtree of) a kd-tree, and a range R.
 
//Output. All points at leaves below v that lie in the range.
 
if v is a leaf
 
    Report the point stored at v if it lies in R.
 
else
 
    if region(v.left) is fully contained in R
 
      ReportSubtree(v.left)
 
    else if region(v.left) intersects R
 
      SearchKdTree(v.left, R)
 
    if region(v.right) is fully contained in R
 
      ReportSubtree(v.right)
 
    else if region(v.right) intersects R
 
      SearchKdTree(v.right, R)
 
</code>
 
  
Здесь <tex>ReportSubtree</tex> репортит все точки в поддереве.
+
Итого у нас появилось несколько новых рёбер. Они все хорошие (по [[#newedgeslemma|лемме 7]]), плохими могут оказаться только рёбра, противолежащие вставленной точке. Флипаем рёбра, пока триангуляция не станет хорошей.
 +
 
 +
==== Вставка точки, лежащей снаружи триангуляции ====
 +
Представим, что вне триангуляции — бесконечные треугольники, основания которых — рёбра выпуклой оболочки триангуляции, а противолежащая ребру вершина — это бесконечно удалённая точка. Тогда понятно, что вставка точки, не лежащей в триангуляции, сведётся к вставке точки внутрь триангуляции, если мы научимся обрабатывать бесконечные фейсы.
 +
 
 +
Бесконечно удалённая точка имеет координаты <tex>(0,0,1,0)</tex> (последняя координата — однородная).
 +
 
 +
Тогда проверка на то, является ли хорошим ребро, инцидентное бесконечно удалённой точке, упрощается:
 +
<tex>
 +
\begin{vmatrix}
 +
a_x & a_y & a_x^2 + a_y^2 & 1 \\
 +
b_x & b_y & b_y^2 + b_y^2 & 1 \\
 +
c_x & c_y & c_x^2 + c_y^2 & 1 \\
 +
0  & 0  & 1            & 0
 +
\end{vmatrix} = \begin{vmatrix}
 +
a_x & a_y & 1 \\
 +
b_x & b_y & 1 \\
 +
c_x & c_y & 1
 +
\end{vmatrix}
 +
</tex>, то есть достаточно проверить поворот трёх остальных точек образованного двумя бесконечными треугольниками четырёхугольника.
 +
 
 +
Проверка, принадлежит ли точка бесконечному треугольнику, тоже проста: нужно, чтобы из точки было видно ребро, противолежащее бесконечно удалённой точке, в бесконечном треугольнике. Это проверяется предикатом поворота.
 +
 
 +
==== Время работы ====
 +
{{Лемма
 +
|about=8
 +
|statement=
 +
При вставке точки будут флипаться только рёбра, противолежащие вставленной точке.
 +
|proof=
 +
[[Файл:Flip edges.png|400px|thumb|right|V — вставленная точка, ребро AC — плохое]]
 +
Доказательство по индукции.
  
By the way, точно так же можно перечислять точки в любом множестве, ведь нигде не используется, что <tex>R</tex> {{---}} прямоугольник.
+
База. По [[#newedgeslemma|лемме 7]] изначально не будут флипаться новые рёбра, инцидентные точке, то есть плохими могут оказаться только рёбра, противолежащие точке.
  
{{Теорема
+
Переход. Рассмотрим, что произойдёт с противолежащим точке <tex>V</tex> ребром <tex>AC</tex> после флипа, если оно плохое. До вставки точки <tex>V</tex> для триангуляции выполнялся глобальный критерий Делоне, поэтому в окружности, описанной вокруг треугольника <tex>ACD</tex>, не будет лежать никаких точек, кроме точки <tex>V</tex>. Можно построить окружность, касающуюся её изнутри в точке <tex>D</tex> и проходящую через точку <tex>V</tex>. В ней тоже не окажется никаких точек, так как она касается изнутри. Значит, для ребра <tex>VD</tex> выполняется критерий Делоне. Значит, после флипа ребро <tex>AC</tex> уже не будет флипаться. Так как для рёбер <tex>AV</tex> и <tex>CV</tex> выполняется критерий Делоне, то плохими после флипа могут стать только рёбра <tex>AD</tex> и <tex>CD</tex> — то есть рёбра, противолежащие точке <tex>V</tex>.
|about=
+
}}
О времени на запрос
+
{{Лемма
 +
|about=9
 
|statement=
 
|statement=
Перечисление точек в прямоугольнике выполняется за <tex>O(\sqrt n + ans)</tex>, где <tex>ans</tex> {{---}} размер ответа.
+
Средняя степень вершины после вставки её в триангуляцию Делоне равна <tex>O(1)</tex>.
 +
|id=deglemma
 
|proof=
 
|proof=
Сперва заметим, что все <tex>ReportSubtree</tex> суммарно выполняются за <tex>O(ans)</tex>. Поэтому достаточно доказать оценку для числа рекурсивных вызовов. А рекурсивные вызовы выполняются только для тех вершин, регионы которых пересекают <tex>R</tex>, но не содержатся в нём. Такие регионы обязательно пересекают хотя бы одну (axis-parallel) сторону заданного прямоугольника. Оценим количество регионов, которые могут пересекаться произвольной вертикальной прямой. Для горизонтальной прямой это будет аналогично.  
+
Предположим, что мы вставляем <tex>i+1</tex>-ую точку из последовательности из <tex>n</tex> точек. Рассмотрим все перестановки из этих <tex>i+1</tex> точек, означающие порядок вставки этих точек. Всего таких перестановок <tex>(i+1)!</tex>. Тогда средняя степень последней вершины среди перестановок равна:
  
Обозначим максимально возможное количество регионов, пересекаемых какой-либо вертикальной прямой, в дереве для <tex>n</tex> точек, у которого первое разбиение делается вертикальной прямой, как <tex>Q(n)</tex>. Рассмотрим произвольную вертикальную прямую <tex>l</tex>. Она будет пересекать регион корня и какого-то одного из его детей (например, левого). При этом ни один из регионов в другом (правом) поддереве пересекать она не может. Левая половина разбита ещё на 2 части горизонтальной прямой, в каждой из них примерно <tex>n / 4</tex> вершин, и они хранятся в поддереве, у которого первое разбиение делается вертикальной прямой. Это даёт нам следующее соотношение:
+
<tex>E(\operatorname{deg}(v_{i+1}))=\frac {\sum_{p=perm(v_1, v_2, ..., v_{i+1})} \operatorname{deg} (p[i+1])} {(i+1)!}</tex>
  
<tex>Q(n) = O(1)</tex> if <tex>n = 1</tex>.
+
Каждая из <tex>i+1</tex> вершин побывает последней ровно <tex>i!</tex> раз, поэтому:
  
<tex>Q(n) = 2 + 2 \cdot Q(n / 4)</tex>, otherwise.
+
<tex>E(\operatorname{deg} (v_{i+1}))=\frac {\sum_{k=0}^{i} i! \operatorname{deg} (v_k)} {(i+1)!} = \frac {\sum_{k=0}^i \operatorname{deg}(v_k)} {i+1} = \frac {O(i+1)} {i+1} = O(1)</tex>
 +
}}
 +
{{Теорема
 +
|statement=
 +
При вставке точки в триангуляцию Делоне в среднем придётся сделать <tex>O(1)</tex> флипов.
 +
|id=flipnumberlemma
 +
|proof=
 +
Все флипнутые рёбра окажутся инцидентными вставленной точке (по лемме 8), а [[#deglemma|степень вершины — <tex>O(1)</tex> (по лемме 9)]]. Поэтому будет сделано <tex>O(1)</tex> флипов.
 +
}}
 +
Так как среднее число флипов — <tex>O(1)</tex>, то время вставки целиком зависит от времени локализации.
 +
 
 +
=== Удаление точки ===
 +
==== Алгоритм ====
 +
При удалении точки получится {{Acronym|звёздный многоугольник, который можно затриангулировать за линию|Общеизвестный факт}}. При этом все рёбра, полученные в результате триангуляции звёздного многоугольника, могут оказаться плохими, поэтому необходимо пройтись по ним и пофлипать, если нужно.
 +
==== Время работы ====
 +
{{Acronym|Средняя степень вершины в триангуляции — <tex>O(1)</tex>|Общеизвестный факт}}, поэтому триангуляция звёздного многоугольника будет тоже за <tex>O(1)</tex>. Новых рёбер получится <tex>O(1)</tex>, проверить их на локальный критерий Делоне и пофлипать тоже можно за <tex>O(1)</tex>. Итого удаление точки работает за <tex>O(1)</tex>.
  
Нетрудно заметить, что <tex>Q(n) = O(\sqrt n)</tex> является решением. Принимая во внимание всё, что писалось выше, получаем требуемое.
+
== Constraints ==
 +
{{Определение
 +
|definition=
 +
'''Констрейнты''' — рёбра, которые нельзя флипать.
 +
}}
 +
{{Утверждение
 +
|statement=
 +
Хорошая триангуляция с констрейнтом может быть хорошей с точностью до видимости через констрейнт.
 
}}
 
}}
By the way, в общем случае время на запрос <tex>O(n^{1 - 1/k} + ans)</tex> из соотношения <tex>Q(n) = k + 2^{k - 1} \cdot Q(n / 2^k)</tex>.
+
=== Вставка ===
 +
[[Файл:Constraint.png|400px|thumb|right|Красным выделен вставляемый констрейнт]]
 +
Смотрим на список рёбер, пересечённых ещё не вставленным констрейнтом, и флипаем их. Последнее флипнутое ребро и будет констрейнтом {{Acronym|(по понятным причинам)|Рёбра, пересечённые констрейнтом, после флипа будут начинаться в той же точке, что и констрейнт, а заканчиваться в точке, в которой начинается ещё одно пересекающее ребро. Последнее же ребро будет начинаться и заканчиваться в начале и конце констрейнта}}, после флипа пометим его как констрейнт. Затем флипаем всё, что могло стать плохим (кроме констрейнта), пока триангуляция вновь не станет хорошей.
 +
=== Удаление ===
 +
Аналогично: помечаем ребро как не-констрейнт и флипаем, пока не дойдём до хорошей триангуляции.

Версия 21:39, 21 января 2015

nothumb
НЯ!
Эта статья полна любви и обожания.
Возможно, стоит добавить ещё больше?

Определение

Определение:
Подразбиение Делоне множества точек — такое разбиение выпуклой оболочки множества точек на множество выпуклых фигур, что в окружности, описанной вокруг любой из фигур, не находится никаких точек из множества.


Определение:
Триангуляция Делоне множества точек — триангуляция, являющаяся подразбиением Делоне.


Существование триангуляции Делоне

Лемма (1):
Окружность, спроецированная на параболоид, находится в одной плоскости. Все точки, лежащие внутри окружности, будут лежать под этой плоскостью. Точки, лежащие вне окружности, будут лежать над плоскостью.
Теорема:
Подразбиение Делоне существует, причём для каждого набора точек оно единственно.
Доказательство:
[math]\triangleright[/math]

Спроецируем все точки на параболоид и построим выпуклую оболочку.

Все грани выпуклой оболочки окажутся внутри параболоида из-за его выпуклости. При этом точки лежат на параболоиде. Поэтому не найдётся точек, которые будут лежать за гранями выпуклой оболочки. То есть все точки, спроецированные на параболоид, будут принадлежать выпуклой оболочке.

По лемме 1 очевидно, что внутри окружностей, описанных вокруг проекций граней выпуклой оболочки, не будет лежать никаких точек. Значит, проекции граней — фигуры подразбиения Делоне. Значит, такое подразбиение существует.

Из единственности выпуклой оболочки следует, что такое подразбиение единственно.
[math]\triangleleft[/math]

Критерий Делоне для рёбер

Определение:
Критерий Делоне для ребра: на ребре можно построить такую окружность, что внутри неё не будет лежать никаких точек.
Лемма (2):
Триангуляции Делоне принадлежат те и только те рёбра (с поправкой на точки, лежащие на одной окружности), которые удовлетворяют критерию Делоне.
Доказательство:
[math]\triangleright[/math]
Для рёбер AB и CD выполняется критерий Делоне, на них построены окружности

То, что для рёбер, принадлежащих триангуляции Делоне, выполняется критерий Делоне для рёбер, очевидно (вокруг каждого ребра можно описать окружность, проходящую через противолежащую ему точку в смежном треугольнике, причём в окружности не будет никаких точек по критерию Делоне).

Докажем, что если для ребра выполняется критерий Делоне, то оно принадлежит триангуляции Делоне.

Предположим, что это ребро (назовём его [math]AB[/math]) не принадлежит триангуляции Делоне. Тогда существует пересекающее его ребро [math]CD[/math], принадлежащее триангуляции. Рассмотрим четырёхугольник [math]ACBD[/math]. Точки [math]C[/math] и [math]D[/math] лежат вне окружности, построенной на [math]AB[/math] как на хорде, поэтому сумма углов [math]C[/math] и [math]D[/math] меньше 180°. Аналогичным образом доказывается, что сумма углов [math]A[/math] и [math]B[/math] тоже меньше 180°. Значит, сумма углов четырёхугольника [math]ACBD[/math] меньше 360°, что невозможно. Противоречие. Значит, ребро [math]AB[/math] принадлежит триангуляции Делоне.
[math]\triangleleft[/math]

Локальный критерий Делоне

Определение:
Локальный критерий Делоне: для пары треугольников, которым принадлежит это ребро, выполняется критерий Делоне (то есть вершина, противолежащая ребру в одном треугольнике, не лежит в окружности, описанной вокруг другого, и наоборот).

Будем называть хорошими те рёбра, для которых выполняется локальный критерий Делоне.

Лемма (3):
Из двух рёбер, которые можно провести для пары треугольников, как минимум одно хорошее.
Доказательство:
[math]\triangleright[/math]
Рёбра AB и BC плохие
Предположим, что это не так, то есть оба ребра (назовём их [math]AB[/math] и [math]CD[/math]) плохие. Рассмотрим четырёхугольник [math]ACBD[/math] и окружность, описанную вокруг треугольника [math]ABC[/math]. Точка [math]D[/math] лежит внутри этой окружности, значит, сумма углов [math]C[/math] и [math]D[/math] больше 180°. Аналогично доказывается, что сумма углов [math]A[/math] и [math]B[/math] больше 180°. Значит, сумма углов четырёхугольника [math]ACBD[/math] больше 360°, что невозможно.
[math]\triangleleft[/math]
Лемма (4):
Если для всех рёбер выполняется локальный критерий Делоне, то выполняется и глобальный критерий Делоне.
Доказательство:
[math]\triangleright[/math]
Все рёбра треугольника хорошие, но описанная окружность содержит точки

Предположим, что это не так, то есть все рёбра хорошие, но существуют треугольники, описанная окружность которых содержат какие-либо точки триангуляции. Возьмём какую-либо конфликтную точку [math]E[/math]. Рассмотрим такой треугольник [math]ABC[/math] из тех, в описанную окружность которых попадает [math]E[/math], что угол [math]BEC[/math] максимален, если [math]BC[/math] — ближайшая к точке [math]E[/math] сторона. Пусть треугольник [math]BDC[/math] — смежный с [math]ABC[/math].

Докажем, что точка [math]E[/math] лежит в окружности, описанной вокруг [math]BDC[/math]. Предположим, что это не так. Посмотрим на окружность, описанную вокруг треугольника [math]ABC[/math]: [math]\angle BAC + \angle BEC \gt 180^\circ[/math] и [math]\angle BAC + \angle BDC \lt 180^\circ[/math]. Если точка [math]E[/math] не лежит в окружности, описанной вокруг треугольника [math]BDC[/math], то [math]\angle BEC \lt \angle BDC[/math], что противоречит предыдущим двум неравенствам.

Очевидно, что угол [math]BED[/math] больше, чем угол [math]BEC[/math]. При этом точка [math]E[/math] лежит в окружности, описанной вокруг [math]BDC[/math]. Значит, при выборе треугольника нужно было взять не [math]ABC[/math], а [math]BDC[/math]. Противоречие.
[math]\triangleleft[/math]

Динамическая триангуляция

Определение:
Рассмотрим пару смежных треугольников. Рёбра этих треугольников образуют четырёхугольник с проведённой в нём диагональю. Операция замены этой диагонали на другую называется flip (флип).
Красное ребро — до флипа, синее — после

Из леммы 3 следует, что если ребро плохое, то флип сделает его хорошим.

Лемма (5):
Флип плохого ребра уменьшает разность объёмов параболоида и триангуляции, спроецированной на него.
Доказательство:
[math]\triangleright[/math]

Рассмотрим два таких смежных треугольника, что ребро между ними является плохим. Спроецируем их на параболоид. Четыре точки, принадлежащие смежным треугольникам, при проекции на параболоид образуют тетраэдр.

Проведём через какой-нибудь из двух треугольников плоскость. Вершина, противолежащая основанию тетраэдра, являющегося этим треугольником, лежит ниже этой плоскости (так как не выполняется локальный критерий Делоне), то есть тетраэдр лежит ниже тела, образующегося при проекции всей триангуляции на параболоид.

После флипа станет выполняться локальный критерий Делоне, то есть тело станет включать в себя тетраэдр. Поэтому после флипа плохого ребра объём тела увеличится на объём этого тетраэдра.
[math]\triangleleft[/math]
Лемма (6):
Флипами можно достичь хорошей триангуляции за конечное время.
Доказательство:
[math]\triangleright[/math]
Всего триангуляций заданного множества точек конечное число, и среди них есть триангуляция Делоне. Последовательность флипов плохих рёбер триангуляции образует такую последовательность триангуляций, что разность объёмов параболоида и спроецированной на него триангуляции убывает (по лемме 5). Эта последовательность конечна (при этом последней в последовательности является триангуляция Делоне), значит, число флипов, требуемых для достижения триангуляции Делоне, тоже конечно.
[math]\triangleleft[/math]
Лемма (7):
Если в триангуляцию Делоне вставить точку в некоторый треугольник и соединить его вершины с этой точкой, то получившиеся рёбра будут хорошими.
Доказательство:
[math]\triangleright[/math]
Точка V вставлена в треугольник ABC

Предположим, точка была вставлена не на ребро. Рассмотрим любое из рёбер — пусть это будет ребро [math]VC[/math]. Проведём окружность, описывающую треугольник [math]ABC[/math]. По критерию Делоне в ней не будет никаких точек триангуляции. На ребре [math]VC[/math] можно построить окружность, изнутри касающуюся окружности, описанной вокруг треугольника. В ней тоже нет никаких точек. Значит, для [math]VC[/math] выполняется критерий Делоне для рёбер, значит, ребро должно принадлежать триангуляции с добавленной точкой [math]V[/math], значит, оно хорошее.

Случай, когда точка вставляется на ребро, рассматривается аналогично.
[math]\triangleleft[/math]

Вставка точки

Вставка точки, лежащей внутри триангуляции

Вставка в треугольник
Вставка на ребро

Для начала локализуемся: поймём, в каком фейсе лежит точка (или на каком ребре).

Если точка лежит внутри фейса, добавляем три ребра, сам фейс превращаем в один из новых смежных с вставляемой точкой и добавялем ещё два фейса.

Если же точка лежит на ребре, два смежных с ребром фейса превращаем в два новых, добавляем ещё два, а так же превращаем ребро, на которое вставляется точка, в ребро, которое заканчивается в этой точке, и вставляем три новых.

Итого у нас появилось несколько новых рёбер. Они все хорошие (по лемме 7), плохими могут оказаться только рёбра, противолежащие вставленной точке. Флипаем рёбра, пока триангуляция не станет хорошей.

Вставка точки, лежащей снаружи триангуляции

Представим, что вне триангуляции — бесконечные треугольники, основания которых — рёбра выпуклой оболочки триангуляции, а противолежащая ребру вершина — это бесконечно удалённая точка. Тогда понятно, что вставка точки, не лежащей в триангуляции, сведётся к вставке точки внутрь триангуляции, если мы научимся обрабатывать бесконечные фейсы.

Бесконечно удалённая точка имеет координаты [math](0,0,1,0)[/math] (последняя координата — однородная).

Тогда проверка на то, является ли хорошим ребро, инцидентное бесконечно удалённой точке, упрощается: [math] \begin{vmatrix} a_x & a_y & a_x^2 + a_y^2 & 1 \\ b_x & b_y & b_y^2 + b_y^2 & 1 \\ c_x & c_y & c_x^2 + c_y^2 & 1 \\ 0 & 0 & 1 & 0 \end{vmatrix} = \begin{vmatrix} a_x & a_y & 1 \\ b_x & b_y & 1 \\ c_x & c_y & 1 \end{vmatrix} [/math], то есть достаточно проверить поворот трёх остальных точек образованного двумя бесконечными треугольниками четырёхугольника.

Проверка, принадлежит ли точка бесконечному треугольнику, тоже проста: нужно, чтобы из точки было видно ребро, противолежащее бесконечно удалённой точке, в бесконечном треугольнике. Это проверяется предикатом поворота.

Время работы

Лемма (8):
При вставке точки будут флипаться только рёбра, противолежащие вставленной точке.
Доказательство:
[math]\triangleright[/math]
V — вставленная точка, ребро AC — плохое

Доказательство по индукции.

База. По лемме 7 изначально не будут флипаться новые рёбра, инцидентные точке, то есть плохими могут оказаться только рёбра, противолежащие точке.

Переход. Рассмотрим, что произойдёт с противолежащим точке [math]V[/math] ребром [math]AC[/math] после флипа, если оно плохое. До вставки точки [math]V[/math] для триангуляции выполнялся глобальный критерий Делоне, поэтому в окружности, описанной вокруг треугольника [math]ACD[/math], не будет лежать никаких точек, кроме точки [math]V[/math]. Можно построить окружность, касающуюся её изнутри в точке [math]D[/math] и проходящую через точку [math]V[/math]. В ней тоже не окажется никаких точек, так как она касается изнутри. Значит, для ребра [math]VD[/math] выполняется критерий Делоне. Значит, после флипа ребро [math]AC[/math] уже не будет флипаться. Так как для рёбер [math]AV[/math] и [math]CV[/math] выполняется критерий Делоне, то плохими после флипа могут стать только рёбра [math]AD[/math] и [math]CD[/math] — то есть рёбра, противолежащие точке [math]V[/math].
[math]\triangleleft[/math]
Лемма (9):
Средняя степень вершины после вставки её в триангуляцию Делоне равна [math]O(1)[/math].
Доказательство:
[math]\triangleright[/math]

Предположим, что мы вставляем [math]i+1[/math]-ую точку из последовательности из [math]n[/math] точек. Рассмотрим все перестановки из этих [math]i+1[/math] точек, означающие порядок вставки этих точек. Всего таких перестановок [math](i+1)![/math]. Тогда средняя степень последней вершины среди перестановок равна:

[math]E(\operatorname{deg}(v_{i+1}))=\frac {\sum_{p=perm(v_1, v_2, ..., v_{i+1})} \operatorname{deg} (p[i+1])} {(i+1)!}[/math]

Каждая из [math]i+1[/math] вершин побывает последней ровно [math]i![/math] раз, поэтому:

[math]E(\operatorname{deg} (v_{i+1}))=\frac {\sum_{k=0}^{i} i! \operatorname{deg} (v_k)} {(i+1)!} = \frac {\sum_{k=0}^i \operatorname{deg}(v_k)} {i+1} = \frac {O(i+1)} {i+1} = O(1)[/math]
[math]\triangleleft[/math]
Теорема:
При вставке точки в триангуляцию Делоне в среднем придётся сделать [math]O(1)[/math] флипов.
Доказательство:
[math]\triangleright[/math]
Все флипнутые рёбра окажутся инцидентными вставленной точке (по лемме 8), а степень вершины — [math]O(1)[/math] (по лемме 9). Поэтому будет сделано [math]O(1)[/math] флипов.
[math]\triangleleft[/math]

Так как среднее число флипов — [math]O(1)[/math], то время вставки целиком зависит от времени локализации.

Удаление точки

Алгоритм

При удалении точки получится звёздный многоугольник, который можно затриангулировать за линию. При этом все рёбра, полученные в результате триангуляции звёздного многоугольника, могут оказаться плохими, поэтому необходимо пройтись по ним и пофлипать, если нужно.

Время работы

Средняя степень вершины в триангуляции — [math]O(1)[/math], поэтому триангуляция звёздного многоугольника будет тоже за [math]O(1)[/math]. Новых рёбер получится [math]O(1)[/math], проверить их на локальный критерий Делоне и пофлипать тоже можно за [math]O(1)[/math]. Итого удаление точки работает за [math]O(1)[/math].

Constraints

Определение:
Констрейнты — рёбра, которые нельзя флипать.
Утверждение:
Хорошая триангуляция с констрейнтом может быть хорошей с точностью до видимости через констрейнт.

Вставка

Красным выделен вставляемый констрейнт

Смотрим на список рёбер, пересечённых ещё не вставленным констрейнтом, и флипаем их. Последнее флипнутое ребро и будет констрейнтом (по понятным причинам), после флипа пометим его как констрейнт. Затем флипаем всё, что могло стать плохим (кроме констрейнта), пока триангуляция вновь не станет хорошей.

Удаление

Аналогично: помечаем ребро как не-констрейнт и флипаем, пока не дойдём до хорошей триангуляции.