Участница:Mariashka

Материал из Викиконспекты
Перейти к: навигация, поиск
Определение:
Повтором (англ. repeatition) называется непустая строка вида [math]\alpha\alpha[/math]

Алгоритм Мейна-Лоренца (англ. Main-Lorentz algorithm) — алгоритм на строках, позволяющий найти все повторы в строке [math]s[1..n][/math] за [math]O(n \log n)[/math]

Алгоритм

Так как повторов строке [math] \Omega(n^2)[/math], мы не можем хранить их в явном виде. Будем хранить повторы блоками вида [math](length, first, last)[/math], где [math] length [/math] — это длина повтора, а [math] [first, last] [/math] — промежуток индексов, в которых заканчиваются повторы такой длины. Для каждой длины может быть несколько блоков.

Данный алгоритм — это алгоритм типа "разделяй и властвуй":

  1. Разделим строку пополам
  2. Заметим, что повторы делятся на две группы: пересекающие и не пересекающие границу раздела
  3. Рекурсивно запустимся от каждой половинки — так мы найдем повторы, которые не пересекают границу раздела
  4. Далее рассмотрим процесс нахождения повторов, которые пересекают границу раздела

Повторы, пересекающие границу раздела, можно разделить на две группы по положению центра повтора: правые и левые.

Нахождение правых повтров

Рассмотрим строку [math]t = uv[/math], пусть [math]shift[/math] — индекс начала [math]t[/math] в исходной строке [math]s[/math]

  1. Предподсчитаем следующие массивы c помощью z-функции:
    1. [math] RP[i] = lcp(v[i..v.len], v) [/math], то есть наибольший общий префикс строк v[i..v.len] и v
    2. [math] RS[i] = lcs(v[1..i], u) [/math], то есть наибольший общий суффикс строк v[1..i] и u
  2. Переберем длину повтора [math] 2p [/math] и будем искать все повторы такой длины. Для этого для каждого [math] p [/math] получим интервал индексов конца повтора в строке [math] v [/math]: [math] [x, y] [/math](позднее покажем, как это сделать).
  3. Добавим к ответу, учитывая смещение в исходной строке [math] s [/math] : [math](2p, x + shift + u.len, y + shift + u.len) [/math]

Итоговая асимптотика: [math] O(t) [/math]

Докажем следующее утверждение для нахождения интервала [math] [x, y] [/math]:

Утверждение:
[math]2p -RS[p] \leq i \leq p - RP[p + 1][/math], где [math]i[/math] индекс конца повтора в строке [math]v[/math].
[math]\triangleright[/math]

Рассмотрим правый повтор [math]ww[/math].
Обозначим как [math]k[/math] ту часть первой полвины повтора, которая принадлежит [math]u[/math], а как [math]l[/math] — ту часть первого повтора, которая принадлежит [math]v[/math]. Аналогичные во второй половине как [math]m[/math] и [math]n[/math](см. рисунок).

RightRepetition.png
Пусть [math] b [/math] — длина [math]k[/math].
Заметим, что [math]w = k + l = m + n[/math] и [math] k = m, l = n [/math].
Тогда

  1. [math] k = u[(u.len - b + 1) .. u.len] = m = v[(i - p + 1) .. p] [/math]
  2. [math] l = v[1 .. (i - p)] = n = v[(p + 1) .. i] [/math]

[math](1)[/math] эквивалентно тому, что [math]u[/math] и [math]v[1 .. p][/math] имеют общий суффикс длины не менее [math]b[/math]: [math]2p - i = b \leq RS[p][/math].

[math](2)[/math] эквивалентно тому, что строки [math] v[/math] и [math] v[p+1..v.len][/math] имеют общий префикс длины не менее [math]p-b = i-p[/math]: [math]i - p \leq RP[p + 1] [/math]
[math]\triangleleft[/math]

Нахождение левых повтров

Рассмотрим строку [math]t = uv[/math], пусть [math]shift[/math] — индекс начала [math]t[/math] в исходной строке [math]s[/math]

  1. Предподсчитаем следующие массивы с помощью z-функции:
    1. [math] LP[i] = lcp(u[i..u.len], v) [/math], то есть наибольший общий префикс строк u[i..u.len] и v
    2. [math] LS[i] = lcs(u[1..i], u) [/math], где [math] lcs [/math] — наибольший общий суффикс
  2. Переберем длину повтора [math] 2p [/math] и будем искать все повторы такой длины. Для этого для каждого [math] p [/math] получим интервал индексов конца повтора в строке [math] v [/math]: [math] [x, y] [/math](позднее покажем, как это сделать).
  3. Добавим к ответу, учитывая смещение в исходной строке [math] s [/math] : [math](2p, x + shift + u.len, y + shift + u.len) [/math]

Итоговая асимптотика: [math] O(t) [/math]

Докажем следующее утверждение для нахождения интервала [math] [x, y] [/math]:

Утверждение:
[math] p - LS[u.len - p] \leq i \leq LP[u.len - p + 1] [/math]
[math]\triangleright[/math]

Рассмотрим правый повтор [math]ww[/math].
Обозначим как [math]m[/math] ту часть первой второй повтора, которая принадлежит [math]u[/math], а как [math]n[/math] — ту часть второго повтора, которая принадлежит [math]v[/math]. Аналогичные во второй половине как [math]k[/math] и [math]l[/math](см. рисунок).

LeftRepetition.png
Пусть [math] b [/math] — длина [math]k+l+m[/math]. Заметим, что [math]w = k + l = m + n[/math] и [math] k = m, l = n [/math].
Тогда

  1. [math] k = u[(u.len - b + 1) .. (u.len - p)] = m = u[(u.len - b + p + 1) .. u.len] [/math]
  2. [math] l = u[(u.len - p + 1) .... (u.len - b + p)] = n = v[1 .... i] [/math]

[math](1)[/math] эквивалентно тому, что [math]u[/math] и [math]u[(u.len - b + 1) .. u.len][/math] имеют общий префикс длины не менее [math]b - p = p - i[/math]: [math] p - i \leq LS[u.len - p][/math].

[math](2)[/math] эквивалентно тому, что строки [math] v[/math] и [math] u[(u.len - p)..u.len][/math] имеют общий суффикс длины не менее [math]i[/math]: [math]i \leq LP[u.len - p + 1] [/math]
[math]\triangleleft[/math]

Асимптотика

Ассимптотика алгоритма "разделяй и властвуй", каждый рекурсивный запуск которого линеен относительно длины строки, [math] O(n \log n) [/math] из рекурентного соотношения [math]T(n)=2T(n/2)+O(n)[/math] (аналогичное доказательство для сортировки слиянием).

Количество блоков в ответе также будет [math] O(n \log n) [/math], так как при каждом рекрсивном запуске добавляется [math] O(1) [/math] блоков для каждой рассмотренной длины повтора, а их количество линейно относительно длины строки.