Факторгруппа — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Примеры)
Строка 26: Строка 26:
 
=== Примеры ===
 
=== Примеры ===
 
* Рассмотрим <tex>G=\mathbb{Z}</tex> и её нормальную подгруппу <tex>H=n\mathbb{Z}</tex>, тогда <tex>G/H=\mathbb{Z}/n\mathbb{Z}</tex> (группы вычетов по модулю <tex>n</tex>) будет являться факторгруппой G по H.
 
* Рассмотрим <tex>G=\mathbb{Z}</tex> и её нормальную подгруппу <tex>H=n\mathbb{Z}</tex>, тогда <tex>G/H=\mathbb{Z}/n\mathbb{Z}</tex> (группы вычетов по модулю <tex>n</tex>) будет являться факторгруппой G по H.
 
+
* Рассмотрим группу невырожденных матриц <tex> GL_n</tex>. Отображение <tex>A \rightarrow \det A</tex> является гомоморфизмом <tex>GL_n \rightarrow \mathbb{R}</tex>. Ядро — группа матриц с единичным определителем <tex>SL_n</tex>. Поэтому <tex>SL_n</tex> является нормальной подгруппой в <tex>GL_n</tex> и факторгруппа <tex>GL_n/SL_n=\mathbb{R}</tex>.
  
 
[[Категория: Теория групп]]
 
[[Категория: Теория групп]]

Версия 12:01, 11 июля 2010

Эта статья требует доработки!
  1. Требуется еще несколько примеров факторгрупп.
  2. Требуется пример группы [math]G[/math] и ее подгруппы [math]H[/math] (не нормальной), для которых [math]G/H[/math] не является группой.

Если Вы исправили некоторые из указанных выше замечаний, просьба дописать в начало соответствующего пункта (Исправлено).

Факторгруппа

Рассмотрим группу [math]G[/math] и ее нормальную подгруппу [math]H[/math]. Пусть [math]G/H[/math] — множество смежных классов [math]G[/math] по [math]H[/math]. Определим в [math]G/H[/math] групповую операцию по следующему правилу.

Определение:
Произведением смежностных классов [math]aH[/math] и [math]bH[/math] назовем смежностный класс [math](ab)H[/math].


Утверждение:
Определение произведения смежных классов корректно. То есть произведение смежных классов не зависит от выбранных представителей [math]a[/math] и [math]b[/math].
[math]\triangleright[/math]

Пусть [math]aH,bH\in G/H,\,a_1=a\cdot h_a\in aH,\,b_1=b\cdot h_b\in bH[/math]. Докажем, что [math]abH=a_1 b_1 H[/math]. Достаточно показать, что [math]a_1\cdot b_1 \in abH[/math].

В самом деле, [math]a_1\cdot b_1=a\cdot h_a\cdot b\cdot h_b=a\cdot b\cdot (b^{-1}\cdot h_a\cdot b)\cdot h_b[/math]. Элемент [math]h = (b^{-1}\cdot h_a\cdot b)[/math] лежит в [math]H[/math] по свойству нормальности [math]H[/math]. Следовательно, [math]a\cdot b\cdot h\cdot h_b\in abH[/math].
[math]\triangleleft[/math]


Определение:
Таким образом, множество смежных классов [math]G/H[/math] с введенной на нем операцией произведения образует группу, которая называется факторгруппой [math]G[/math] по [math]H[/math] . Нейтральным элементом является [math]H[/math], обратным к [math]aH[/math][math]a^{-1}H[/math].


Примеры

  • Рассмотрим [math]G=\mathbb{Z}[/math] и её нормальную подгруппу [math]H=n\mathbb{Z}[/math], тогда [math]G/H=\mathbb{Z}/n\mathbb{Z}[/math] (группы вычетов по модулю [math]n[/math]) будет являться факторгруппой G по H.
  • Рассмотрим группу невырожденных матриц [math] GL_n[/math]. Отображение [math]A \rightarrow \det A[/math] является гомоморфизмом [math]GL_n \rightarrow \mathbb{R}[/math]. Ядро — группа матриц с единичным определителем [math]SL_n[/math]. Поэтому [math]SL_n[/math] является нормальной подгруппой в [math]GL_n[/math] и факторгруппа [math]GL_n/SL_n=\mathbb{R}[/math].