Формула Тейлора для полиномов — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м (Больше формулы)
м (Больше формулы)
Строка 26: Строка 26:
 
собрав коэффициенты при одинаковых степенях <tex>x-x_0</tex>, получим полином искомые коэффициенты <tex>b_i</tex>
 
собрав коэффициенты при одинаковых степенях <tex>x-x_0</tex>, получим полином искомые коэффициенты <tex>b_i</tex>
  
Теперь докажем, что <tex>b_k = \frac{P_n^{(k)}(x_0)}{k!}</tex>.
+
Теперь докажем, что <tex dpi=150>b_k = \frac{P_n^{(k)}(x_0)}{k!}</tex>.
  
 
<tex>(x^p)^{(k)} = p(p-1)(p-2) \ldots (p - k + 1)x^{p - k}</tex>. Отсюда видно, что если порядок дифференцирования <tex>k</tex>:
 
<tex>(x^p)^{(k)} = p(p-1)(p-2) \ldots (p - k + 1)x^{p - k}</tex>. Отсюда видно, что если порядок дифференцирования <tex>k</tex>:
Строка 40: Строка 40:
 
При <tex>j \leq n</tex>: <tex>P_n^{(j)}(x) = \sum\limits_{k = 0}^n b_k ((x - x_0)^k)^{(j)}</tex>
 
При <tex>j \leq n</tex>: <tex>P_n^{(j)}(x) = \sum\limits_{k = 0}^n b_k ((x - x_0)^k)^{(j)}</tex>
  
В силу вышесказанного, при <tex>x = x_0</tex>, получаем, <tex>P_n^{(j)}(x_0) = b_j \cdot j! \Rightarrow b_j = \frac{P_n^{(j)}(x_0)}{j!}</tex>
+
В силу вышесказанного, при <tex>x = x_0</tex>, получаем, <tex dpi=150>P_n^{(j)}(x_0) = b_j \cdot j! \Rightarrow b_j = \frac{P_n^{(j)}(x_0)}{j!}</tex>
 
}}
 
}}
  
 
[[Категория:Математический анализ 1 курс]]
 
[[Категория:Математический анализ 1 курс]]

Версия 20:20, 28 ноября 2010

Эта статья находится в разработке!

Степень полинома

Определение:
Пусть полином [math]P_n(x) = \sum\limits_{k = 0}^n a_kx^k[/math]. Тогда при [math]a_0 \ne 0[/math], [math]n = \deg P_n[/math]степень полинома.


Теорема Тейлора

Теорема (Тейлор):
[math]\forall x_0 \in \mathbb{R} \ P_n(x) = \sum\limits_{k = 0}^n \frac{P_n^{(k)}(x_0)}{k!} (x - x_0)^k[/math] — разложение полинома по степеням [math]x - x_0[/math]
Доказательство:
[math]\triangleright[/math]

Установим существование коэффициентов [math]b_0, b_1, \ldots , b_n: \ P_n = \sum\limits_{k = 0}^n b_k (x-x_0)^k[/math].

Забавный факт: [math]x = x - x_0 + x_0[/math]. Тогда [math]x^k = (x - x_0 + x_0)^k = \sum\limits_{j=0}^k C_j^k (x - x_0)^j x_0^{k - j}[/math]

[math]P_n(x) = \sum\limits_{k=0}^n a_kx^k = \sum\limits_{k = 0}^n a_k \sum\limits_{j=0}^n C_j^k (x - x_0)^j x_0^{k - j}[/math]

Так как в этой повторной сумме(что хотел этим сказать автор?) формуле [math]x - x_0[/math] присутствует максимум в [math]n[/math]-й степени, собрав коэффициенты при одинаковых степенях [math]x-x_0[/math], получим полином искомые коэффициенты [math]b_i[/math]

Теперь докажем, что [math]b_k = \frac{P_n^{(k)}(x_0)}{k!}[/math].

[math](x^p)^{(k)} = p(p-1)(p-2) \ldots (p - k + 1)x^{p - k}[/math]. Отсюда видно, что если порядок дифференцирования [math]k[/math]:

  • больше, чем [math]p[/math], то [math](x^p)^{(k)} = 0[/math]
  • равен [math]p[/math], то [math](x^p)^{(k)} = p![/math]


Если порядок меньше, чем [math]k[/math], то значение [math]k[/math]-й производной в нуле равно [math]\left. (x^p)^{(k)} \right|_0 = 0[/math]

Тогда [math](P_n(x))^{(j)} = \left(\sum\limits_{k = 0}^n b_k (x-x_0)^k \right)^{(j)}[/math]

При [math]j \leq n[/math]: [math]P_n^{(j)}(x) = \sum\limits_{k = 0}^n b_k ((x - x_0)^k)^{(j)}[/math]

В силу вышесказанного, при [math]x = x_0[/math], получаем, [math]P_n^{(j)}(x_0) = b_j \cdot j! \Rightarrow b_j = \frac{P_n^{(j)}(x_0)}{j!}[/math]
[math]\triangleleft[/math]