Хроматический многочлен планарного графа — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м
(Статья перенесена http://neerc.ifmo.ru/wiki/index.php?title=Хроматическое_число_планарного_графа)
 
Строка 1: Строка 1:
== Введение ==
 
  
 
== Раскраска в 6 цветов ==
 
{{Лемма
 
|id=5deg_vertex_lemma
 
|statement=В любом графе <tex> G </tex> существует вершина степени не больше 5
 
|proof=
 
Предположим это не так. Для любой вершины <tex> u_i </tex> графа <tex> G </tex> верно <tex> deg </tex> <tex> u_i \ge 6 </tex>. Если сложить это неравенство для всех <tex> i </tex>, получим <tex> 2E \ge 6V </tex>. Но по [[Формула_Эйлера#EulerFormulaCons|следствию из теоремы Эйлера]] <tex> E \le 3V-6 </tex>. Пришли к противоречию.
 
}}
 
 
{{Теорема
 
|statement=
 
Пусть граф <tex>G</tex> — планарный. Тогда <tex> \chi (G) \le 6</tex>
 
|proof=
 
Докажем по индукции.
 
* База
 
Если граф содержит не более 6 вершин, то утверждение очевидно.
 
* Переход
 
Предположим, что для планарного графа с <tex>N</tex> вершинами существует раскраска в 6 цветов. Докажем то же для графа с <tex> N+1 </tex> вершиной.
 
 
По только что доказанной лемме в <tex> G </tex> найдётся вершина степени не больше 5. Удалим её; по предположению индукции получившийся граф можно раскрасить в 6 цветов.
 
Вернём удалённую вершину и покрасим её в цвет, не встречающийся среди смежных ей вершин. Индукционный переход доказан
 
}}
 
 
== Раскраска в 5 цветов ==
 
{{Теорема
 
|statement=
 
Пусть граф <tex>G</tex> — планарный. Тогда <tex> \chi (G) \le 5</tex>
 
|proof=
 
Начало доказательства такое же, как в предыдущей теореме, трудность возникает в индукционном переходе. Покажем что для случая с 5-ю цветами всё равно можно вернуть удалённую вершину так, чтобы раскраска осталась правильной.
 
 
Обозначим за <tex> u </tex> — возвращаемую вершину, <tex> v^{(k)} </tex> — вершина, покрашенная в <tex> k </tex> цвет.
 
 
Если среди вершин, смежных <tex> u </tex>, есть две вершины одного цвета, значит остаётся один свободный цвет, в который мы и покрасим <tex> u </tex>.
 
 
Иначе, уложим полученный после удаления <tex> u </tex> граф на плоскость и пронумеруем цвета в порядке обхода смежных вершин по часовой стрелке.
 
 
Попробуем покрасить <tex> u </tex> в цвет 1. Чтобы раскраска осталась правильной, перекрасим смежную ей вершину <tex>v_1^{(1)}</tex> в цвет 3. Если среди смежных ей вершин есть вершины <tex> v_2^{(3)} </tex>, покрасим их в цвет 1, и так далее. Рассмотрим 2 необычных варианта, которые могут наступить во время обхода:
 
#мы дойдём до уже однажды перекрашенной вершины (и хотим перекрасить её обратно). Видно что такая ситуация невозможна, поскольку мы меняли цвета вершин по схеме 1 <tex>\leftrightarrow</tex> 3, и если мы получили две смежные вершины одного цвета, значит и до перекрасок в графе были две вершины одинакового цвета, а по предположению граф без <tex> u </tex> был раскрашен правильно.
 
#дойдём до вершины, смежной <tex> u </tex>, исходно имевшей цвет 3, которую перекрасить в 1 нельзя (<tex> u </tex> теперь имеет цвет 1).
 
 
Если этот процесс был успешно завершён, то получили правильную раскраску.
 
Если же в соответствии со 2-ым вариантом перекраска не удалась, это означает, что в <tex> G </tex> есть цикл <tex> u v_1^{(1)} v_2^{(3)} v_3^{(1)} ... v_{k-1}^{(1)} v_k^{(3)} u </tex>.
 
 
Тогда попытаемся таким же образом перекрасить <tex> u </tex> в цвет 2, а смежную ей <tex>w_1^{(2)}</tex> в цвет 4 (со последующими перекрасками). Если удастся - раскраска получена.
 
 
Если нет, то получили ещё один цикл <tex> u w_1^{(2)} w_2^{(4)} w_3^{(2)} ... w_{k-1}^{(2)} w_k^{(4)} u </tex>. Но граф планарный, значит два полученных цикла пересекаются по крайней мере в двух вершинах — <tex> u </tex> и какой-то другой, что невозможно, ведь вершины <tex> v_i </tex> первого цикла и <tex> w_j </tex> второго — разных цветов. В этом случае получаем противоречие.
 
 
}}
 
 
Заметим что нельзя составить подобное доказательство для раскраски в 4 цвета, поскольку здесь наличие двух вершин одного цвета среди смежных <tex> u </tex> не исключает того, что все они раскрашены в разные цвета
 
 
 
== Источники ==
 
# http://matica.org.ua/lektsii-po-diskretnoy-matematike/3-08-6-raskraski-planarnich-grafov
 
[[Категория: Алгоритмы и структуры данных]]
 
[[Категория: Раскраски графов]]
 

Текущая версия на 16:22, 27 марта 2014