Редактирование: Циклическое пространство графа

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 48: Строка 48:
 
<tex> \operatorname {dim}(C) = m - n + k </tex>
 
<tex> \operatorname {dim}(C) = m - n + k </tex>
 
|proof=
 
|proof=
<tex> \operatorname {dim}(C)=\operatorname {dim}(\operatorname {Ker}(I))=m-\operatorname {Rang}(A) </tex>, где <tex> \operatorname {Rang}(A) </tex> {{---}} максимальное количество ЛНЗ столбцов <tex> A </tex>. Если рассмотреть простой цикл <tex>C</tex> в <tex> G </tex>, то сумма столбцов соответствующих этим ребрам равна <tex>0</tex>, т. к. значение оператора <tex>I</tex> на  соответствующем обобщенном цикле в точности равно сумме этих столбцов. Значит, эти столбцы ЛЗ. Отсюда следует, что если любому множеству ребер, содержащих цикл, в соответствие сопоставить набор столбцов из <tex> A </tex>, то он будет ЛЗ
+
<tex> \operatorname {dim}(C)=\operatorname {dim}(\operatorname {Ker}(i))=m-\operatorname {Rang}(A) </tex>, где <tex> \operatorname {Rang}(A) </tex> {{---}} максимальное количество ЛНЗ столбцов <tex> A </tex>. Если рассмотреть простой цикл <tex>C</tex> в <tex> G </tex>, то сумма столбцов соответствующих этим ребрам равна <tex>0</tex>, т. к. значение оператора <tex>I</tex> на  соответствующем обобщенном цикле в точности равно сумме этих столбцов. Значит, эти столбцы ЛЗ. Отсюда следует, что если любому множеству ребер, содержащих цикл, в соответствие сопоставить набор столбцов из <tex> A </tex>, то он будет ЛЗ
  
 
{{Утверждение
 
{{Утверждение

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)