Редактирование: Явление Гиббса

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 7: Строка 7:
 
}}
 
}}
  
С целью упрощения вычислений рассмотрим на примере функции, равной знаку числа <tex>f(x) = \operatorname{sign} x</tex>, <tex>2\pi</tex>-периодизованной. Эта функция удовлетворяет условию [[Сходимость ряда Фурье в индивидуальной точке#Теорема Дини | теоремы Дини]] в каждой точке, значит, в каждой точке её можно разложить в ряд Фурье. <tex>f(x) </tex> {{---}} нечётная, значит, будет ряд только по синусам:
+
С целью упрощения вычислений рассмотрим на примере функции, равной знаку числа <tex>f(x) = \operatorname{sign} x</tex>, <tex>2\pi</tex>-периодизованной. Эта функция удовлетворяет условию [[теоремы Дини]] в каждой точке, значит, в каждой точке её можно разложить в ряд Фурье. <tex>f(x) </tex> {{---}} нечётная, значит, будет ряд только по синусам:
  
 
<tex>s_n(x) = \int\limits_Q f(t) D_n(t-x) dt = \int\limits_0^\pi + \int\limits_{-\pi}^0 = -1 \cdot \int\limits_{-\pi}^0 D_n(t-x)dt + 1 \cdot \overset{t:=-y}{\int\limits_0^\pi D_n(t-x)dt}</tex> <tex>=\int\limits_0^\pi D_n(t-x) dt - \int\limits_0^\pi D_n(t+x)dt</tex> <tex>=\int\limits_{-x}^{\pi-x} D_n(t)dt - \int\limits_x^{\pi+x} D_n(t) dt</tex> <tex>= \int\limits_{-x}^x + \int\limits_x^{\pi-x} - \int\limits_x^{\pi+x}</tex> <tex>= \int\limits_{-x}^x - \left(\int\limits_x^{\pi+x} - \int\limits_x^{\pi-x}\right)</tex> <tex>=\int\limits_{-x}^x - \int\limits_{\pi-x}^{\pi+x}</tex> <tex>=\int\limits_{-x}^x (D_n(t) - D_n(\pi + t))dt</tex>
 
<tex>s_n(x) = \int\limits_Q f(t) D_n(t-x) dt = \int\limits_0^\pi + \int\limits_{-\pi}^0 = -1 \cdot \int\limits_{-\pi}^0 D_n(t-x)dt + 1 \cdot \overset{t:=-y}{\int\limits_0^\pi D_n(t-x)dt}</tex> <tex>=\int\limits_0^\pi D_n(t-x) dt - \int\limits_0^\pi D_n(t+x)dt</tex> <tex>=\int\limits_{-x}^{\pi-x} D_n(t)dt - \int\limits_x^{\pi+x} D_n(t) dt</tex> <tex>= \int\limits_{-x}^x + \int\limits_x^{\pi-x} - \int\limits_x^{\pi+x}</tex> <tex>= \int\limits_{-x}^x - \left(\int\limits_x^{\pi+x} - \int\limits_x^{\pi-x}\right)</tex> <tex>=\int\limits_{-x}^x - \int\limits_{\pi-x}^{\pi+x}</tex> <tex>=\int\limits_{-x}^x (D_n(t) - D_n(\pi + t))dt</tex>
Строка 28: Строка 28:
 
<tex>s_n(x_{m_n}) = \frac2\pi \int\limits_0^{x_{m_n}} \frac{\sin m_nt}{\sin t} dt=</tex> (заменим переменную на <tex>m_n t</tex>) <tex>= \frac2\pi \int\limits_0^\pi \frac{\sin t}t \frac{t/m_n}{\sin t/m_n} dt</tex>
 
<tex>s_n(x_{m_n}) = \frac2\pi \int\limits_0^{x_{m_n}} \frac{\sin m_nt}{\sin t} dt=</tex> (заменим переменную на <tex>m_n t</tex>) <tex>= \frac2\pi \int\limits_0^\pi \frac{\sin t}t \frac{t/m_n}{\sin t/m_n} dt</tex>
  
<tex> \frac{t/m_n}{\sin t/m_n} \xrightarrow[n \to \infty]{} 1</tex>, <tex>\frac{t}{\sin t}</tex> возрастает, значит, к этому интегралу применима [[Предельный переход под знаком интеграла Лебега | теорема Лебега о предельном переходе под знаком интеграла]]:
+
<tex> \frac{t/m_n}{\sin t/m_n} \xrightarrow[n \to \infty]{} 1</tex>, <tex>\frac{t}{\sin t}</tex> возрастает, значит, к этом интегралу применима [[теорема Лебега о предельном переходе под знаком интеграла]]:
  
 
<tex>s_n(x_{m_n}) > s_{n+1}(x_{m_{n+1}})</tex>
 
<tex>s_n(x_{m_n}) > s_{n+1}(x_{m_{n+1}})</tex>

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)