Ядро — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Исправлены опечатки)
(Добавлено 2 пунткта, изменена картинка)
Строка 1: Строка 1:
[[File:kernel3_2.png|500px|thumb|right|Пример использования ядерного трюка]]
+
[[File:kernel2_3.png|500px|thumb|right|Пример использования ядерного трюка]]
 
'''Ядерный трюк'''(анг.-- ''kernel function'') метод в машинном обучении, позволяющий перевести элементы для случая линейной неразделимости в новое линейно разделимое пространство. Такое пространство называют '''спрямляющим'''. Поскольку для любой непротиворечивой выборки соответствующее пространство большей размерности существует, главной проблемой становится его найти.
 
'''Ядерный трюк'''(анг.-- ''kernel function'') метод в машинном обучении, позволяющий перевести элементы для случая линейной неразделимости в новое линейно разделимое пространство. Такое пространство называют '''спрямляющим'''. Поскольку для любой непротиворечивой выборки соответствующее пространство большей размерности существует, главной проблемой становится его найти.
  
Строка 9: Строка 9:
  
 
Можно пойти ещё дальше, и вовсе отказаться от признаковых описаний объектов. Во многих практических задачах объекты изначально задаются информацией об их попарном взаимоотношении, например, отношении сходства. Если эта информация допускает представление в виде двуместной функции $K(x,x')$, удовлетворяющей аксиомам скалярного произведения, то задача может решаться методом [[Метод опорных векторов (SVM) | опорных векторов ]].
 
Можно пойти ещё дальше, и вовсе отказаться от признаковых описаний объектов. Во многих практических задачах объекты изначально задаются информацией об их попарном взаимоотношении, например, отношении сходства. Если эта информация допускает представление в виде двуместной функции $K(x,x')$, удовлетворяющей аксиомам скалярного произведения, то задача может решаться методом [[Метод опорных векторов (SVM) | опорных векторов ]].
 +
 +
 +
== Преимущества и недостатки ==
 +
 +
'''Преимущества'''
 +
 +
*обобщение линейных методов на нелинейный случай
 +
 +
** с сохранением вычислительной эффективности линейных методов
 +
 +
**с сохранением преимуществ линейных методов(локальный оптимум является глобальным, нет локальных оптимумов=>меньше переобучение)
 +
 +
*объекты для которых не существует векторныхпредставлений фиксированной длины
 +
 +
*ускоренное вычисление скалярных произведений для высоких значений D
 +
 +
'''Недостатки'''
 +
 +
*вычислительно сложно проверять принадлежность функции ядру
 +
 +
*поиск подходящего ядра экспоненциально сложен из-за их большого многообразия
 +
 +
== Характерные случаи применения ==
 +
* Признаковое пространство высокой размерности
 +
 +
Например все полиномы до степени M, для случая Гаусовского ядра - признаковое пространство бесконечной размерности.
 +
 +
* Случай, когда сложно представить объекты векторами фиксированной длины
 +
 +
Такие как строки, множества, картинки, тексты, графы,3D-структуры и т.д.
 +
 +
* Существование естественного определения скалярного произведения
 +
 +
Такие как строки(число совместно встречающихся подстрок) или множества(напр. для множеств $S_1$ и $S_2$ ядром будет являться $K(S_1, S_2) = 2^{|S_1\cap S_2|}$)
 +
 +
* Скалярное произведение может быть подсчитано эффективно
  
 
== Выбор функции ядра ==
 
== Выбор функции ядра ==
Строка 39: Строка 75:
  
  
== Некоторые часто используемые функции ==
+
== Некоторые часто используемые ядра ==
  
 
0. '''Линейное''' $K(x, x')= \langle x, x'\rangle$
 
0. '''Линейное''' $K(x, x')= \langle x, x'\rangle$
Строка 51: Строка 87:
  
 
Такое ядро соответсвует бесконечномерному пространству. Поскольку оно является пределом последовательности полиномиальных ядер при стремлении степени ядра к бесконечности.
 
Такое ядро соответсвует бесконечномерному пространству. Поскольку оно является пределом последовательности полиномиальных ядер при стремлении степени ядра к бесконечности.
 +
 +
3.'''Сигмоидальное''' ядро $tangh (\gamma \langle x, x'\rangle + r)$
 +
 +
В отличии от предыдущих 3-х не является ядром Мерсера.
 +
 +
4.'''Строковое''' ядро
 +
 +
<ref>[https://ru.wikipedia.org/wiki/%D0%A1%D1%82%D1%80%D0%BE%D0%BA%D0%BE%D0%B2%D0%BE%D0%B5_%D1%8F%D0%B4%D1%80%D0%BE#%D0%9E%D0%BF%D1%80%D0%B5%D0%B4%D0%B5%D0%BB%D0%B5%D0%BD%D0%B8%D0%B5 - Строковые ядра]</ref> это разлиные вариации вычисления расстояний между двумя строками.
  
 
== См. также ==
 
== См. также ==
Строка 63: Строка 107:
 
#[https://github.com/esokolov/ml-course-msu/blob/master/ML16/lecture-notes/Sem12_linear.pdf github.com/esokolov/ml-course-msu — Евгений Соколов Ядра и их применение в машинном обучении]
 
#[https://github.com/esokolov/ml-course-msu/blob/master/ML16/lecture-notes/Sem12_linear.pdf github.com/esokolov/ml-course-msu — Евгений Соколов Ядра и их применение в машинном обучении]
 
#[https://ru.wikipedia.org/wiki/%D0%AF%D0%B4%D0%B5%D1%80%D0%BD%D1%8B%D0%B9_%D0%BC%D0%B5%D1%82%D0%BE%D0%B4#%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0:_%D1%8F%D0%B4%D0%B5%D1%80%D0%BD%D1%8B%D0%B9_%D1%82%D1%80%D1%8E%D0%BA wikipedia.org — Ядерный метод]
 
#[https://ru.wikipedia.org/wiki/%D0%AF%D0%B4%D0%B5%D1%80%D0%BD%D1%8B%D0%B9_%D0%BC%D0%B5%D1%82%D0%BE%D0%B4#%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0:_%D1%8F%D0%B4%D0%B5%D1%80%D0%BD%D1%8B%D0%B9_%D1%82%D1%80%D1%8E%D0%BA wikipedia.org — Ядерный метод]
 +
#[http://www.machinelearning.ru/wiki/images/7/78/Kitov-ML-09-Kernel_methods.pdf www.machinelearning.ru — Виктор Китов Ядерные методы]
  
 
[[Категория: Машинное обучение]]
 
[[Категория: Машинное обучение]]
 
[[Категория: Классификация]]
 
[[Категория: Классификация]]

Версия 02:23, 23 марта 2020

Пример использования ядерного трюка

Ядерный трюк(анг.-- kernel function) метод в машинном обучении, позволяющий перевести элементы для случая линейной неразделимости в новое линейно разделимое пространство. Такое пространство называют спрямляющим. Поскольку для любой непротиворечивой выборки соответствующее пространство большей размерности существует, главной проблемой становится его найти.


Определение

Функция $K(x,x'):X×X\rightarrow \mathbb{R}$ называется ядром, если она может быть представлена в виде $K(x,x')=\langle \varphi(x),\varphi(x')\rangle_H$ при некотором отображении $\varphi(x):X\rightarrow H$,где $H$ — пространство со скалярным произведением.

Поскольку для задачи линейного разделения объектов не требуется их признаковое описание, а достаточно скаляров, то можно заменить скалярное произведение $\langle x,x'\rangle$ на ядро $K(x,x')$. Более того, можно вообще не строить спрямляющее пространство $H$ в явном виде, и вместо подбора отображения $\varphi$ заниматься непосредственно подбором ядра.

Можно пойти ещё дальше, и вовсе отказаться от признаковых описаний объектов. Во многих практических задачах объекты изначально задаются информацией об их попарном взаимоотношении, например, отношении сходства. Если эта информация допускает представление в виде двуместной функции $K(x,x')$, удовлетворяющей аксиомам скалярного произведения, то задача может решаться методом опорных векторов .


Преимущества и недостатки

Преимущества

  • обобщение линейных методов на нелинейный случай
    • с сохранением вычислительной эффективности линейных методов
    • с сохранением преимуществ линейных методов(локальный оптимум является глобальным, нет локальных оптимумов=>меньше переобучение)
  • объекты для которых не существует векторныхпредставлений фиксированной длины
  • ускоренное вычисление скалярных произведений для высоких значений D

Недостатки

  • вычислительно сложно проверять принадлежность функции ядру
  • поиск подходящего ядра экспоненциально сложен из-за их большого многообразия

Характерные случаи применения

  • Признаковое пространство высокой размерности

Например все полиномы до степени M, для случая Гаусовского ядра - признаковое пространство бесконечной размерности.

  • Случай, когда сложно представить объекты векторами фиксированной длины

Такие как строки, множества, картинки, тексты, графы,3D-структуры и т.д.

  • Существование естественного определения скалярного произведения

Такие как строки(число совместно встречающихся подстрок) или множества(напр. для множеств $S_1$ и $S_2$ ядром будет являться $K(S_1, S_2) = 2^{|S_1\cap S_2|}$)

  • Скалярное произведение может быть подсчитано эффективно

Выбор функции ядра

   Теорема Мерсера: Функция $K(x,y)$ является ядром тогда и только тогда, когда она симметрична: $K(x,y)=K(y,x)$ и неотрицательно определена, то есть $\forall g: X \rightarrow \mathbb{R}, \int_X \int_X K(x, x')g(x)g(x')dxdx' \geqslant 0$

Таким образом мы видим, что класс ядер достаточно широк.

Проверка неотрицательной определённости функции в реальных задачах может быть сложной. Чаще всего ограничиваются перебором конечного числа функций, про которые известно, что они являются ядрами. Среди них выбирается лучшая (обычно по критерию скользящего контроля). Такое решение не будет оптимальным, и на сегодняшний день проблема выбора ядра, оптимального для данной конкретной задачи, остаётся открытой.

Конструктивные способы построения ядер

1.Произвольное скалярное произведение $ K(x,x') =\langle x,x'\rangle $ является ядром.

2. Константа $K(x,x') = 1$ является ядром.

3. Произведение ядер $K(x,x')=K_1(x,x')K_2(x,x')$является ядром.

4. Для любой функции $\psi :X\rightarrow R$ произведение $K(x,x′) =\psi(x)\psi(x')$— ядро.

5. Линейная комбинация ядер с неотрицательными коэффициентами $K(x,x')=\alpha_1K_1(x,x') +\alpha_2K_2(x,x')$является ядром.

6. Композиция произвольной функции $\varphi:X \rightarrow X$ и произвольного ядра $K_0$ является ядром: $K(x,x')=K_0(\varphi(x),\varphi(x'))$.

7. Если $s:X×X\rightarrow R$ произвольная симметричная интегрируемая функция, то $K(x,x′) =\int_Xs(x,z)s(x',z)dz$ является ядром.

8. Функция вида $K(x,x') = k(x−x')$ является ядром тогда и только тогда, когда Фурье-образ $F[k](\omega) = (2\pi)^{\frac{n}{2}}\int_Xe^{−i\langle\omega,x\rangle }k(x)dx$ неотрицателен.

9. Предел локально-равномерно сходящейся последовательности ядер — ядро.

10. Композиция произвольного ядра $K_0$ и произвольной функции $f:R\rightarrow R$, представимой в виде сходящегося степенного ряда с неотрицательными коэффициентами $K(x,x') = f(K_0(x,x'))$, является ядром. В частности, функции $f(z) =e^z$ и $f(z) =\frac{1}{1−z}$ где $z$ - функция ядра — являются ядрами.


Некоторые часто используемые ядра

0. Линейное $K(x, x')= \langle x, x'\rangle$ Используется в алгоритме SVM по умолчанию.

1. Полиномиальное ядро $K(x, x') = (\langle x, x' \rangle + R)^d$

Используется когда необходимо получить полином $p(y)$, где в качестве y выступает скалярное произведение $\langle x, x' \rangle$. Поскольку в конструктивных возможностях у нас есть умножение ядер, умножение на коэффициент и сложение, то любой многочлен так же является ядром.

2. Гаусово ядро RBF K(x, x') = $exp(-\frac{\parallel x - x'\parallel^2}{2\sigma^2})$

Такое ядро соответсвует бесконечномерному пространству. Поскольку оно является пределом последовательности полиномиальных ядер при стремлении степени ядра к бесконечности.

3.Сигмоидальное ядро $tangh (\gamma \langle x, x'\rangle + r)$

В отличии от предыдущих 3-х не является ядром Мерсера.

4.Строковое ядро

[1] это разлиные вариации вычисления расстояний между двумя строками.

См. также

Примечания

Источники информации

  1. Ядра и спрямляющие пространства p.73-75 — К. В. Воронцов Математические методы обучения по прецедентам
  2. github.com/esokolov/ml-course-msu — Евгений Соколов Ядра и их применение в машинном обучении
  3. wikipedia.org — Ядерный метод
  4. www.machinelearning.ru — Виктор Китов Ядерные методы