Регулярное представление группы

Материал из Викиконспекты
Версия от 23:12, 17 января 2012; Proshev (обсуждение | вклад)
(разн.) ← Предыдущая | Текущая версия (разн.) | Следующая → (разн.)
Перейти к: навигация, поиск

Рассмотрим конечную группу [math]G[/math], [math]\vert G\vert=n[/math]. Занумеруем элементы: [math]g_1,g_2,...,g_n[/math]. Рассмотрим преобразование всех элементов группы под действием какого-то одного:

[math]\phi_i:G\rightarrow G,\,\phi_i(a)=g_i\cdot a[/math]

Это отображение, очевидно, сюръективно (прообразом элемента [math]x[/math] служит [math]g_i^{-1}\cdot x[/math]), инъективно([math]g_i\cdot a = g_i\cdot b\,\Leftrightarrow\, a=b[/math]), а значит, и биективно. Иными словами, оно является перестановкой.

Определим отображение [math]\psi:G\rightarrow S_n,\,\psi(g_i)=\phi_i[/math]. При этом [math]\phi_i[/math] рассматривается как перестановка. Очевидно, что это отображение является гомоморфизмом: [math]\psi(a\cdot b)=\psi(a)\cdot\psi(b)[/math]. Раз образ гомоморфизма является подгруппой, то верно утверждение: любая конечная группа изоморфна(для этого надо еще упомянуть, что различным элементам группы сопоставляются различные перестановки - в группе не бывает "двойников", которые действуют одинаково на все элементы - по крайней мере, они отличаются действием на нейтральный элемент) некоторой подгруппе достаточно большой симметрической группы. Такое представление конечной группы подгруппой перестановок называется регулярным представлением.