0-1 принцип — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м (Новая страница: «Есть два способа проверить сеть из n компараторов на то, что она сортирующая. Первый, наивн…»)
 
м
Строка 1: Строка 1:
 
Есть два способа проверить сеть из n компараторов на то, что она сортирующая.
 
Есть два способа проверить сеть из n компараторов на то, что она сортирующая.
 +
 
Первый, наивный способ - перебрать все перестановки из n элементов, пропустить их через сеть и проверить их на то, что они отсортированы. Этот подход потребует <tex> O(n! \cdot Comp(n)) </tex> действий, где <tex> Comp(n) </tex> - количество компараторов в сети из n элементов. Обычно это количество можно оценить как <tex> n^2 \log n </tex>(сеть Бэтчера), то есть получаем асимптотику <tex> O(n! n^2 \log n) </tex>, то есть при n, равном уже 10, проверить сеть очень проблематично.
 
Первый, наивный способ - перебрать все перестановки из n элементов, пропустить их через сеть и проверить их на то, что они отсортированы. Этот подход потребует <tex> O(n! \cdot Comp(n)) </tex> действий, где <tex> Comp(n) </tex> - количество компараторов в сети из n элементов. Обычно это количество можно оценить как <tex> n^2 \log n </tex>(сеть Бэтчера), то есть получаем асимптотику <tex> O(n! n^2 \log n) </tex>, то есть при n, равном уже 10, проверить сеть очень проблематично.
 +
 
Второй способ основывается на предположении что если сеть сортирует все последовательности из нулей и единиц, то сеть является сортирующей. Докажем это.
 
Второй способ основывается на предположении что если сеть сортирует все последовательности из нулей и единиц, то сеть является сортирующей. Докажем это.
 +
 +
{{ Определение
 +
| definition =
 +
Функция <tex> f </tex> из A в B называется монотонной, если <tex> \forall a_1, a_2 \in A : a_1 \le a_2 \Rightarrow f(a_1) \le f(a_2) </tex>
 +
}}
 +
 +
{{Лемма
 +
| statement =
 +
Пусть <tex> f: A \rightarrow B </tex> - монотонная. Тогда <tex> \forall a_1, a_2 \in A: f(\min(a_1, a_2)) = \min(f(a_1), f(a_2)) </tex>.
 +
| proof =
 +
Не теряя общности, предположим что <tex> a_1 \le a_2 </tex>. Тогда, <tex> f(\min(a_1, a_2)) = f(a_1) </tex>. Также, по монотонности, <tex> f(a_1) \le f(a_2) </tex>. Тогда <tex> \min(f(a_1), f(a_2)) = f(a_1) </tex>. То есть, <tex> f(\min(a_1, a_2)) = \min(f(a_1), f(a_2)) = f(a_1) </tex>. Такие же рассуждения можно провести для случая <tex> a_2 < a_1 </tex>.
 +
}}
 +
 +
{{ Определение
 +
| definition =
 +
Рассмотрим отображение <tex> f: A \rightarrow B </tex> и последовательность <tex> a = (a_0, a_1, \dots, a_{n-1}) </tex>. Определим <tex> f(a) </tex> как последовательность <tex> f(a_0), f(a_1), \dots , f(a_{n-1}) </tex>, то есть <tex> f(a_i) = f(a)_i </tex>
 +
}}
 +
 +
{{Лемма
 +
| statement =
 +
Пусть <tex> f: A \rightarrow B </tex> - монотонная, а <tex> N </tex> - какая-то сеть компараторов. Тогда <tex> N </tex> и <tex> f </tex> коммутируют: <tex> N(f(a)) = f(N(a)) </tex> - другими словами, неважно, применить сначала <tex> f </tex> к <tex> a </tex> и пропустить через сеть <tex> N </tex>, или пропустить через сеть <tex> N </tex> последовательность <tex> a </tex>, а потом применить монотонную функцию <tex> f </tex>.
 +
| proof =
 +
Рассмотрим произвольный компаратор <tex> [i: j] </tex>, сортирующий элементы <tex> a_i </tex> и <tex> a_j </tex>. Применим его к последовательности <tex> f(a) </tex> и рассмотрим элемент с индексом <tex> i </tex>.
 +
 +
<tex> [i: j]f(a)_i </tex> <br> <tex>= [i: j](f(a_0), \dots, f(a_{n-1}))_i </tex> (по введенному нами определению) <br> <tex> = \min(f(a_i), f(a_j)) </tex> (по определению компаратора)  <br> <tex> = f(\min(a_i, a_j)) </tex> (по уже доказанной лемме)  <br> <tex> = f([i: j](a)_i) </tex> (по определению компаратора)  <br> <tex> = f([i: j](a))_i </tex>(по введенному нами определению).
 +
 +
То есть, в результате <tex> i </tex>-й элемент не зависит от порядка применения компаратора <tex> [i: j] </tex> и функции <tex> f </tex>. Те же рассуждения можно провести для всех других индексов, то есть <tex> [i: j]f(a) = f([i: j](a)) </tex>, и также для всех компараторов в сети, то есть лемма доказана.
 +
}}
 +
 +
{{ Теорема
 +
| about = 0-1 принцип
 +
| statement = Если сеть компараторов сортирует все последовательности из нулей и единиц, то она сортирующая
 +
| proof =
 +
 +
}}

Версия 23:27, 24 мая 2011

Есть два способа проверить сеть из n компараторов на то, что она сортирующая.

Первый, наивный способ - перебрать все перестановки из n элементов, пропустить их через сеть и проверить их на то, что они отсортированы. Этот подход потребует [math] O(n! \cdot Comp(n)) [/math] действий, где [math] Comp(n) [/math] - количество компараторов в сети из n элементов. Обычно это количество можно оценить как [math] n^2 \log n [/math](сеть Бэтчера), то есть получаем асимптотику [math] O(n! n^2 \log n) [/math], то есть при n, равном уже 10, проверить сеть очень проблематично.

Второй способ основывается на предположении что если сеть сортирует все последовательности из нулей и единиц, то сеть является сортирующей. Докажем это.


Определение:
Функция [math] f [/math] из A в B называется монотонной, если [math] \forall a_1, a_2 \in A : a_1 \le a_2 \Rightarrow f(a_1) \le f(a_2) [/math]


Лемма:
Пусть [math] f: A \rightarrow B [/math] - монотонная. Тогда [math] \forall a_1, a_2 \in A: f(\min(a_1, a_2)) = \min(f(a_1), f(a_2)) [/math].
Доказательство:
[math]\triangleright[/math]
Не теряя общности, предположим что [math] a_1 \le a_2 [/math]. Тогда, [math] f(\min(a_1, a_2)) = f(a_1) [/math]. Также, по монотонности, [math] f(a_1) \le f(a_2) [/math]. Тогда [math] \min(f(a_1), f(a_2)) = f(a_1) [/math]. То есть, [math] f(\min(a_1, a_2)) = \min(f(a_1), f(a_2)) = f(a_1) [/math]. Такие же рассуждения можно провести для случая [math] a_2 \lt a_1 [/math].
[math]\triangleleft[/math]


Определение:
Рассмотрим отображение [math] f: A \rightarrow B [/math] и последовательность [math] a = (a_0, a_1, \dots, a_{n-1}) [/math]. Определим [math] f(a) [/math] как последовательность [math] f(a_0), f(a_1), \dots , f(a_{n-1}) [/math], то есть [math] f(a_i) = f(a)_i [/math]


Лемма:
Пусть [math] f: A \rightarrow B [/math] - монотонная, а [math] N [/math] - какая-то сеть компараторов. Тогда [math] N [/math] и [math] f [/math] коммутируют: [math] N(f(a)) = f(N(a)) [/math] - другими словами, неважно, применить сначала [math] f [/math] к [math] a [/math] и пропустить через сеть [math] N [/math], или пропустить через сеть [math] N [/math] последовательность [math] a [/math], а потом применить монотонную функцию [math] f [/math].
Доказательство:
[math]\triangleright[/math]

Рассмотрим произвольный компаратор [math] [i: j] [/math], сортирующий элементы [math] a_i [/math] и [math] a_j [/math]. Применим его к последовательности [math] f(a) [/math] и рассмотрим элемент с индексом [math] i [/math].

[math] [i: j]f(a)_i [/math]
[math]= [i: j](f(a_0), \dots, f(a_{n-1}))_i [/math] (по введенному нами определению)
[math] = \min(f(a_i), f(a_j)) [/math] (по определению компаратора)
[math] = f(\min(a_i, a_j)) [/math] (по уже доказанной лемме)
[math] = f([i: j](a)_i) [/math] (по определению компаратора)
[math] = f([i: j](a))_i [/math](по введенному нами определению).

То есть, в результате [math] i [/math]-й элемент не зависит от порядка применения компаратора [math] [i: j] [/math] и функции [math] f [/math]. Те же рассуждения можно провести для всех других индексов, то есть [math] [i: j]f(a) = f([i: j](a)) [/math], и также для всех компараторов в сети, то есть лемма доказана.
[math]\triangleleft[/math]
Теорема (0-1 принцип):
Если сеть компараторов сортирует все последовательности из нулей и единиц, то она сортирующая