Редактирование: Black-box Complexity. Примеры нереалистичных оценок Black-box Complexity

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 1: Строка 1:
 
== Введение в Black-box Complexity ==
 
== Введение в Black-box Complexity ==
Целью [[Теория_сложности|теории сложности]] является определение вычислительной трудности алгоритмов. Классическая теория сложности предполагает, что алгоритму полностью известна структура решаемой задачи. В случае [[Эволюционные_алгоритмы|эволюционных алгоритмов]], алгоритм обладает информацией только о качестве (значении функции приспособленности) получаемого им решения, по этой причине утверждения классической теории сложности здесь мало применимы.
+
Целью [[Теория_сложности|теории сложности]] является определение вычислительной трудности алгоритмов. Классическая теория сложности предполагает, что алгоритму полностью известна структура решаемой задачи. В случае [[Эволюционные_алгоритмы|эволюционных алгоритмов]], алгоритм обладает информацией только о качестве (значении ''fitness''-функции) получаемого им решения, по этой причине утверждения классической теории сложности здесь мало применимы.
  
'''Black-box Complexity''' <ref name="bbox">[http://dl.acm.org/citation.cfm?doid=2001576.2001851 Doerr B., Kötzing T., Winzen C. Too fast unbiased black-box algorithms]</ref> &mdash; попытка построить теорию сложности для эволюционных алгоритмов. Вкратце, ''black-box'' сложность алгоритма &mdash; количество вычислений функции приспособленности, необходимое для получения решения. Такое определение позволяет получить нереалистично низкие оценки ''black-box'' сложности, например, полиномиальную сложность для [[Примеры_NP-полных_языков._Теорема_Кука|<tex>\mathrm{NP}</tex>-полной]] задачи поиска максимальной клики <ref name="bbox"/><ref>[http://en.wikipedia.org/wiki/Clique_problem Clique problem]</ref>.
+
'''Black-box Complexity''' <ref name="bbox">[http://dl.acm.org/citation.cfm?doid=2001576.2001851 Doerr B., Kötzing T., Winzen C. Too fast unbiased black-box algorithms]</ref> &mdash; попытка построить теорию сложности для эволюционных алгоритмов. Вкратце, ''black-box'' сложность алгоритма &mdash; количество вычислений ''fitness''-функции, необходимое для получения решения. Такое определение позволяет получить не реалистично низкие оценки ''black-box'' сложности, например, полиномиальную сложность для [[Примеры_NP-полных_языков._Теорема_Кука|<tex>\mathrm{NP}</tex>-полной]] задачи поиска максимальной клики <ref>[http://en.wikipedia.org/wiki/Clique_problem Clique problem]</ref>.
  
По этой причине были введены ограничения на исследуемые алгоритмы. Требуется, чтобы для получения новых кандидатов на решение использовались только '''беспристрастные''' (позиция элемента в битовой строке и его значение не влияют на выбор битов для изменения) '''вариативные операторы'''. Также было введено понятие '''арности''' &mdash; <tex>k</tex>-арный беспристрастный ''black-box'' алгоритм использует только те операторы, которые принимают не более чем <tex>k</tex> аргументов. Для некоторых классов задач такой подход к опеределению ''black-box'' сложности позволяет получить более реалистичные оценки вычислительной трудности. Операторы с арностью <tex>1</tex> называют '''мутационными'''. В настоящей статье показано, что даже для алгоритмов, использующих только мутационные операторы, можно получить нереалистично маленькую оценку ''black-box'' сложности.
+
По этой причине были введены ограничения на исследуемые алгоритмы. Требуется, чтобы для получения новых кандидатов на решение использовались только '''несмещенные''' (позиция элемента в битовой строке и его значение не влияют на выбор битов для изменения) '''вариативные операторы'''. Также было введено понятие '''арности''' &mdash; <tex>k</tex>-арный несмещенный ''black-box'' алгоритм использует только те операторы, которые принимают не более чем <tex>k</tex> аргументов. Для некоторых классов задач такой подход к опеределению ''black-box'' сложности позволяет получить более реалистичные оценки вычислительной трудности. Операторы с арностью <tex>1</tex> называют '''мутационными'''. В настоящей статье показано, что даже для алгоритмов, использующих только мутационные операторы, можно получить не реалистично маленькую оценку ''black-box'' сложности.
  
== Неограниченная и беспристрастная Black-box модели ==
+
== Неограниченная и несмещенная Black-box модели ==
 
=== Обозначения ===
 
=== Обозначения ===
 
*<tex>\mathbb{N}</tex> &mdash; положительные целые числа;
 
*<tex>\mathbb{N}</tex> &mdash; положительные целые числа;
Строка 24: Строка 24:
  
 
=== Неограниченная Black-box модель ===
 
=== Неограниченная Black-box модель ===
Рассматривается класс алгоритмов оптимизации, которые получают информацию о решаемой задаче через вычисление функции приспособленности возможных решений. Заданная функция приспособленности вычисляется '''оракулом''', или дается как ''black-box''. Алгоритм может запросить у ''оракула'' значение функции для любого решения, однако больше никакой информации о решении получить не может.
+
Рассматривается класс алгоритмов оптимизации, которые получают информацию о решаемой задаче через вычисление ''fitness''-функции возможных решений. Заданная ''fitness''-функция вычисляется '''ораклом''', или дается как ''black-box''. Алгоритм может запросить у ''оракла'' значение функции для любого решения, однако больше никакой информации о решении получить не может.
  
В качестве функции приспособленности берется псевдо-булевая функция <tex>F:\{0,1\}^n \rightarrow \mathbb{R}</tex>.
+
В качестве ''fitness''-функции берется псевдо-булевая функция <tex>F:\{0,1\}^n \rightarrow \mathbb{R}</tex>.
  
 
Согласно концепции ''black-box'', алгоритм может включать следующие действия:
 
Согласно концепции ''black-box'', алгоритм может включать следующие действия:
 
*выбор вероятностного распределения над <tex>\{0,1\}^n</tex>;
 
*выбор вероятностного распределения над <tex>\{0,1\}^n</tex>;
 
*выбор кандидата <tex>x \in \{0,1\}^n</tex> cогласно выбранному распределению;
 
*выбор кандидата <tex>x \in \{0,1\}^n</tex> cогласно выбранному распределению;
*запрос значения функции приспособленности выбранного кандидата у ''оракула''.
+
*запрос значения ''fitness''-функции выбранного кандидата у ''оракла''.
  
 
Схема неограниченного ''black-box'' алгоритма:
 
Схема неограниченного ''black-box'' алгоритма:
Строка 37: Строка 37:
 
  '''Инициализация:''' выбрать <tex>x^{(0)}</tex> согласно некоторому вероятностному распределению <tex>p^{(0)}</tex> над <tex>\{0,1\}^n</tex>. Запросить <tex>f(x^{(0)})</tex>.
 
  '''Инициализация:''' выбрать <tex>x^{(0)}</tex> согласно некоторому вероятностному распределению <tex>p^{(0)}</tex> над <tex>\{0,1\}^n</tex>. Запросить <tex>f(x^{(0)})</tex>.
 
  '''Оптимизация:''' '''for''' <tex>t = 1, 2, 3, \ldots </tex> '''until''' ''условие остановки'' '''do'''
 
  '''Оптимизация:''' '''for''' <tex>t = 1, 2, 3, \ldots </tex> '''until''' ''условие остановки'' '''do'''
   Исходя из <tex>((x^{(0)}, f(x^{(0)})), \ldots, (x^{(t-1)}, f(x^{(t-1)})))</tex>, выбрать вероятностное распределение <tex>p^{(t)}</tex> над <tex>\{0,1\}^n</tex>.
+
   Исходя из <tex>((x^{(0)}, f(x^{(0)}), \ldots, (x^{(t-1)}, f(x^{(t-1)}))</tex>, выбрать вероятностное распределение <tex>p^{(t)}</tex> над <tex>\{0,1\}^n</tex>.
 
   Выбрать <tex>x^{(t)}</tex> согласно <tex>p^{(t)}</tex> и запросить <tex>f(x^{(t)})</tex>.
 
   Выбрать <tex>x^{(t)}</tex> согласно <tex>p^{(t)}</tex> и запросить <tex>f(x^{(t)})</tex>.
  
В качестве времени работы ''black-box'' алгоритма берется количество запросов к ''оракулу'', сделанное до первого запроса с оптимальным решением.
+
В качестве времени работы ''black-box'' алгоритма берется количество запросов к ''ораклу'' сделанное до первого запроса с оптимальным решением.
  
 
Пусть <tex>\mathcal{F}</tex> &mdash; класс псевдо-булевых функций. Сложностью алгоритма <tex>A</tex> над <tex>\mathcal{F}</tex> называется максимальное предположительное время работы <tex>A</tex> на функции <tex>f \in \mathcal{F}</tex> (в худшем случае). Сложностью <tex>\mathcal{F}</tex> относительно класса алгоритмов <tex>\mathcal{A}</tex> называется минимальная сложность среди всех <tex>A \in \mathcal{A}</tex> над <tex>\mathcal{F}</tex>. Неограниченной ''black-box'' сложностью <tex>\mathcal{F}</tex> называется сложность <tex>\mathcal{F}</tex> относительно класса неограниченных ''black-box'' алгоритмов.
 
Пусть <tex>\mathcal{F}</tex> &mdash; класс псевдо-булевых функций. Сложностью алгоритма <tex>A</tex> над <tex>\mathcal{F}</tex> называется максимальное предположительное время работы <tex>A</tex> на функции <tex>f \in \mathcal{F}</tex> (в худшем случае). Сложностью <tex>\mathcal{F}</tex> относительно класса алгоритмов <tex>\mathcal{A}</tex> называется минимальная сложность среди всех <tex>A \in \mathcal{A}</tex> над <tex>\mathcal{F}</tex>. Неограниченной ''black-box'' сложностью <tex>\mathcal{F}</tex> называется сложность <tex>\mathcal{F}</tex> относительно класса неограниченных ''black-box'' алгоритмов.
  
=== Беспристрастная Black-box модель ===
+
=== Несмещенная Black-box модель ===
 
Класс неограниченных ''black-box'' алгоритмов слишком мощный. Например для любого функционального класса <tex>\mathcal{F} = \{f\}</tex> неограниченная ''black-box'' сложность равна единице &mdash; алгоритм, который просто запрашивает оптимальное решение первым же шагом, удовлетворяет этому условию.
 
Класс неограниченных ''black-box'' алгоритмов слишком мощный. Например для любого функционального класса <tex>\mathcal{F} = \{f\}</tex> неограниченная ''black-box'' сложность равна единице &mdash; алгоритм, который просто запрашивает оптимальное решение первым же шагом, удовлетворяет этому условию.
  
Чтобы избежать этих недостатков была введена более строгая модель. В ней алгоритмы могут генерировать новые решения используя только ''беспристрастные вариативные операторы''.
+
Чтобы избежать этих недостатков была введена более строгая модель. В ней алгоритмы могут генерировать новые решения используя только ''несмещенные вариативные операторы''.
  
 
{{Определение
 
{{Определение
|definition=<tex>\forall k \in \mathbb{N}, k</tex>-арным беспристрастным распределением <tex>(D(\cdot|y^{(1)},\ldots,y^{(k)}))_{y^{(1)},\ldots,y^{(k)} \in \{0,1\}^n}</tex> называется семейство вероятностных распределений над <tex>\{0,1\}^n</tex> таких, что для любых <tex>y^{(1)},\ldots,y^{(k)} \in \{0,1\}^n</tex> выполняются следующие условия:
+
|definition=<tex>\forall k \in \mathbb{N}, k</tex>-арным несмещенным распределением <tex>(D(\cdot|y^{(1)},\ldots,y^{(k)}))_{y^{(1)},\ldots,y^{(k)} \in \{0,1\}^n}</tex> называется семейство вероятностных распределений над <tex>\{0,1\}^n</tex> таких, что для любых <tex>y^{(1)},\ldots,y^{(k)} \in \{0,1\}^n</tex> выполняются следующие условия:
 
*<tex>\forall x, z \in \{0,1\}^n</tex>:
 
*<tex>\forall x, z \in \{0,1\}^n</tex>:
 
:<tex>D(x|y^{(1)},\ldots,y^{(k)}) = D(x \bigoplus z|y^{(1)} \bigoplus z,\ldots,y^{(k)} \bigoplus z)</tex>;
 
:<tex>D(x|y^{(1)},\ldots,y^{(k)}) = D(x \bigoplus z|y^{(1)} \bigoplus z,\ldots,y^{(k)} \bigoplus z)</tex>;
Строка 57: Строка 57:
 
}}
 
}}
  
Первое условие называется <tex>\bigoplus</tex>-инвариантностью, второе &mdash; перестановочной инвариантностью. Оператор, выбранный из <tex>k</tex>-арного беспристрастного распределения, называется '''<tex>k</tex>-арным беспристрастным вариативным оператором'''.
+
Первое условие называется <tex>\bigoplus</tex>-инвариантностью, второе &mdash; перестановочной инвариантностью. Оператор, выбранный из <tex>k</tex>-арного несмещенного распределения называется '''<tex>k</tex>-арным несмещенным вариативным оператором'''.
  
Схема <tex>k</tex>-арного беспристрастного ''black-box'' алгоритма:
+
Схема <tex>k</tex>-арного несмещенного ''black-box'' алгоритма:
  
 
  '''Инициализация:''' выбрать <tex>x^{(0)}</tex> равновероятно из <tex>\{0,1\}^n</tex>. Запросить <tex>f(x^{(0)})</tex>.
 
  '''Инициализация:''' выбрать <tex>x^{(0)}</tex> равновероятно из <tex>\{0,1\}^n</tex>. Запросить <tex>f(x^{(0)})</tex>.
 
  '''Оптимизация:''' '''for''' <tex>t = 1, 2, 3, \ldots </tex> '''until''' ''условие остановки'' '''do'''
 
  '''Оптимизация:''' '''for''' <tex>t = 1, 2, 3, \ldots </tex> '''until''' ''условие остановки'' '''do'''
   Исходя из <tex>(f(x^{(0)}), \ldots, f(x^{(t-1)}))</tex>, выбрать <tex>k</tex> индексов <tex>i_1, \ldots, i_k \in [0..t-1]</tex> и <tex>k</tex>-арное беспристрастное распределение <tex>D(\cdot|x^{(i_1)},\ldots,x^{(i_k)})</tex>.
+
   Исходя из <tex>(f(x^{(0)}), \ldots, f(x^{(t-1)}))</tex>, выбрать <tex>k</tex> индексов <tex>i_1, \ldots, i_k \in [0..t-1]</tex> и <tex>k</tex>-арное несмещенное распределение <tex>D(\cdot|x^{(i_1)},\ldots,x^{(i_k)})</tex>.
 
   Выбрать <tex>x^{(t)}</tex> согласно <tex>D(\cdot|x^{(i_1)},\ldots,x^{(i_k)})</tex> и запросить <tex>f(x^{(t)})</tex>.
 
   Выбрать <tex>x^{(t)}</tex> согласно <tex>D(\cdot|x^{(i_1)},\ldots,x^{(i_k)})</tex> и запросить <tex>f(x^{(t)})</tex>.
  
Строка 78: Строка 78:
 
:<tex>Jump_k(x) = \left\{ \begin{array}{ccc} n, & if & |x|_1=n; \\ |x|_1, & if & k < |x|_1 < n-k; \\ 0, & & otherwise, \end{array}\right.</tex>
 
:<tex>Jump_k(x) = \left\{ \begin{array}{ccc} n, & if & |x|_1=n; \\ |x|_1, & if & k < |x|_1 < n-k; \\ 0, & & otherwise, \end{array}\right.</tex>
  
:<tex>\forall x \in \{0,1\}^n</tex>, где <tex>|\cdot|_1</tex> &mdash; количество единиц в битовой строке.
+
:<tex>\forall x \in \{0,1\}^n.</tex>
 
}}
 
}}
  
Далее будет показано, что для любого константного <tex>k</tex> можно с высокой вероятностью решить задачу <tex>OneMax</tex> <ref>[http://tracer.lcc.uma.es/problems/onemax/onemax.html OneMax problem]</ref> за малое количество ''black-box'' обращений к <tex>Jump_k</tex>. С помощью этого утверждения можно показать, что для любой константы <tex>k</tex> беспристрастная ''black-box'' сложность для функции <tex>Jump_k</tex> нереалистично мала.
+
Далее будет показано, что для любого константного <tex>k</tex> можно с высокой вероятностью решить проблему <tex>OneMax</tex> <ref>[http://tracer.lcc.uma.es/problems/onemax/onemax.html OneMax problem]</ref> за малое количество ''black-box'' обращений к <tex>Jump_k</tex>. С помощью этого утверждения можно показать, что для любой константы <tex>k</tex> несмещенная ''black-box'' сложность для функции <tex>Jump_k</tex> не реалистично мала.
  
 
{{Лемма
 
{{Лемма
 
|id=lemma3
 
|id=lemma3
|statement=Для любых <tex>k</tex> и <tex>c</tex> существует унарная беспристрастная функция <tex>s</tex>, использующая <tex>c+1</tex> запросов к <tex>Jump_k</tex> такая, что для всех битовых строк <tex>x</tex>, <tex>s(x) = OneMax(x)</tex> с вероятностью <tex>1 - O(n^{-c})</tex>.
+
|statement=<tex>\forall k,c</tex> существует унарная несмещенная функция <tex>s</tex>, использующая <tex>c+1</tex> запросов к <tex>Jump_k</tex> такая, что для всех битовых строк <tex>x</tex>, <tex>s(x) = OneMax(x)</tex> с вероятностью <tex>1 - O(n^{-c})</tex>.
|proof=Используется унарный беспристрастный вариативный оператор <tex>flip_k</tex>, который равновероятно выбирает строку из <tex>k</tex>-окрестности для аргумента (битовую строку, которая отличается в <tex>k</tex> позициях). Ниже предлагается функция <tex>s</tex>, которая использует <tex>Jump_k</tex> для аппроксимации <tex>OneMax</tex>. Функция выбирает <tex>c</tex> битовых строк в <tex>k</tex>-окрестности <tex>x</tex>. Если <tex>|x|_1 \geq n-k</tex>, то есть вероятность того, что хотя бы раз в <tex>x</tex> будут заменены только единицы, что приведет к тому, что <tex>Jump_k = |x|_1 - k</tex>. Так как больше никакая строка из выборки не будет иметь меньшее <tex>Jump_k</tex> значение, то добавление <tex>k</tex> к минимальному ненулевому значению <tex>Jump_k</tex> других строк из выборки приведет к нужному результату &mdash; функция вернет количество единиц в строке <tex>x</tex>. Случай, когда <tex>|x|_1 \leq k</tex>, аналогичен.
+
|proof=Используется унарный несмещенный вариативный оператор <tex>flip_k</tex>, который равновероятно выбирает строку из <tex>k</tex>-окрестности для аргумента (битовую строку, которая отличается в <tex>k</tex> позициях). Ниже предлагается функция <tex>s</tex>, которая использует <tex>Jump_k</tex> для аппроксимации <tex>OneMax</tex>. Функция выбирает <tex>c</tex> битовых строк в <tex>k</tex>-окрестности <tex>x</tex>. Если <tex>|x|_1 \geq n-k</tex>, то есть вероятность того, что хотя бы раз в <tex>x</tex> будут заменены только единицы, что приведет к тому, что <tex>Jump_k = |x|_1 - k</tex>. Так как больше никакая строка из выборки не будет иметь меньшее <tex>Jump_k</tex> значение, то добавление <tex>k</tex> к минимальному ненулевому значению <tex>Jump_k</tex> других строк из выборки приведет к нужному результату &mdash; функция вернет количество единиц в строке <tex>x</tex>. Случай, когда <tex>|x|_1 \leq k</tex>, аналогичен.
  
 
Понятно, что функция корректна при всех <tex>x</tex>, таких, что <tex>k < |x|_1 < n-k</tex>. Остальные два случая симметричны, поэтому пусть <tex>|x|_1 \geq n-k</tex>. Очевидно, что результат функции корректен тогда и только тогда, когда хотя бы в одной из <tex>c</tex> строк были заменены только единицы. Требуется вычислить вероятность <tex>p</tex> этого события. Итеративно выбираются <tex>k</tex> бит для замены, поэтому после <tex>i</tex> итераций имеется как минимум <tex>n-k-i</tex> позиций с единицей из <tex>n-i</tex> невыбранных позиций. Отсюда, с использованием неравенства Бернулли <ref>[http://en.wikipedia.org/wiki/Bernoulli%27s_inequality Bernoulli's inequality]</ref>, получается граница на вероятность выбора <tex>k</tex> единиц:
 
Понятно, что функция корректна при всех <tex>x</tex>, таких, что <tex>k < |x|_1 < n-k</tex>. Остальные два случая симметричны, поэтому пусть <tex>|x|_1 \geq n-k</tex>. Очевидно, что результат функции корректен тогда и только тогда, когда хотя бы в одной из <tex>c</tex> строк были заменены только единицы. Требуется вычислить вероятность <tex>p</tex> этого события. Итеративно выбираются <tex>k</tex> бит для замены, поэтому после <tex>i</tex> итераций имеется как минимум <tex>n-k-i</tex> позиций с единицей из <tex>n-i</tex> невыбранных позиций. Отсюда, с использованием неравенства Бернулли <ref>[http://en.wikipedia.org/wiki/Bernoulli%27s_inequality Bernoulli's inequality]</ref>, получается граница на вероятность выбора <tex>k</tex> единиц:
Строка 106: Строка 106:
 
}}
 
}}
  
Теперь, используя [[#lemma3|предыдущую лемму]], можно найти беспристрастную ''black-box'' сложность для функции <tex>Jump_k</tex> при константном <tex>k</tex>.
+
Теперь, используя [[#lemma3|предыдущую лемму]], можно найти несмещенную ''black-box'' сложность для функции <tex>Jump_k</tex> при константном <tex>k</tex>.
  
 
{{Теорема
 
{{Теорема
 
|id=th4
 
|id=th4
|statement=Для константы <tex>k</tex> беспристрастная ''black-box'' сложность <tex>Jump_k</tex>:
+
|statement=Для константы <tex>k</tex> несмещенная ''black-box'' сложность <tex>Jump_k</tex>:
  
 
*<tex>O(n \log(n))</tex> для унарных вариативных операторов;
 
*<tex>O(n \log(n))</tex> для унарных вариативных операторов;
Строка 136: Строка 136:
 
Далее <tex>Partition_{\neq}</tex> &mdash; подкласс задачи <tex>Partition</tex> с заданными различными весами.
 
Далее <tex>Partition_{\neq}</tex> &mdash; подкласс задачи <tex>Partition</tex> с заданными различными весами.
  
Далее предлагаются две различные функции приспособленности и показывается, что в обоих случаях может быть достигнута полиномиальная беспристрастная ''black-box'' сложность. Показывается, что унарная беспристрастная ''black-box'' сложность для задачи <tex>Partition_{\neq}</tex> равна <tex>O(n \log(n))</tex>.
+
Далее предлагаются две различные ''fitness''-функции и показывается, что в обоих случаях может быть достигнута полиномиальная несмещенная ''black-box'' сложность. Показывается, что унарная несмещенная ''black-box'' сложность для задачи <tex>Partition_{\neq}</tex> равна <tex>O(n \log(n))</tex>.
  
=== Знаковая функция приспособленности ===
+
=== Знаковая ''fitness''-функция ===
Пусть <tex>\mathcal{F}_{\mathcal{I}} := \{(\mathcal{I}_0, \mathcal{I}_1) \in 2^{\mathcal{I}} \times 2^{\mathcal{I}} | \mathcal{I}_0 \dot{\cup} \mathcal{I}_1 = \mathcal{I}\}</tex> &mdash; множество всех возможных решений для <tex>\mathcal{I}</tex>. Знаковая функция приспособленности определяется следующим образом:
+
Пусть <tex>\mathcal{F}_{\mathcal{I}} := \{(\mathcal{I}_0, \mathcal{I}_1) \in 2^{\mathcal{I}} \times 2^{\mathcal{I}} | \mathcal{I}_0 \dot{\cup} \mathcal{I}_1 = \mathcal{I}\}</tex> &mdash; множество всех возможных решений для <tex>\mathcal{I}</tex>. Знаковая ''fitness''-функция определяется следующим образом:
  
 
:<tex>f_{\mathcal{I}}^{*}: \mathcal{F} \rightarrow \mathbb{Z}, (\mathcal{I}_0, \mathcal{I}_1) \mapsto \Sigma_{w \in \mathcal{I}_0} w - \Sigma_{w \in \mathcal{I}_1} w</tex>.
 
:<tex>f_{\mathcal{I}}^{*}: \mathcal{F} \rightarrow \mathbb{Z}, (\mathcal{I}_0, \mathcal{I}_1) \mapsto \Sigma_{w \in \mathcal{I}_0} w - \Sigma_{w \in \mathcal{I}_1} w</tex>.
Строка 145: Строка 145:
 
Цель заключается в минимизации <tex>|f_{\mathcal{I}}^{*}|</tex>.
 
Цель заключается в минимизации <tex>|f_{\mathcal{I}}^{*}|</tex>.
  
Необходимо ввести нумерацию элементов <tex>\mathcal{I}</tex> &mdash; <tex>\sigma: \mathcal{I} \rightarrow [n]</tex>. Для любой битовой строки <tex>x \in \{0,1\}^n</tex> определены <tex>\mathcal{I}_0(x) := \{w \in \mathcal{I} | x_{\sigma(w)} = 0\}</tex> и <tex>\mathcal{I}_1(x) := \{w \in \mathcal{I} | x_{\sigma(w)} = 1\}</tex>. Тогда функция приспособленности преобразуется к следующему виду:
+
Необходимо ввести нумерацию элементов <tex>\mathcal{I}</tex> &mdash; <tex>\sigma: \mathcal{I} \rightarrow [n]</tex>. Для любой битовой строки <tex>x \in \{0,1\}^n</tex> определены <tex>\mathcal{I}_0(x) := \{w \in \mathcal{I} | x_{\sigma(w)} = 0\}</tex> и <tex>\mathcal{I}_1(x) := \{w \in \mathcal{I} | x_{\sigma(w)} = 1\}</tex>. Тогда ''fitness''-функция преобразуется к следующему виду:
  
 
:<tex>f_{\mathcal{I}}: \{0,1\}^n \rightarrow \mathbb{Z}, x \mapsto \Sigma_{i \in [n], x_i=0} \sigma^{-1}(i) - \Sigma_{i \in [n], x_i=1} \sigma^{-1}(i)</tex>.
 
:<tex>f_{\mathcal{I}}: \{0,1\}^n \rightarrow \mathbb{Z}, x \mapsto \Sigma_{i \in [n], x_i=0} \sigma^{-1}(i) - \Sigma_{i \in [n], x_i=1} \sigma^{-1}(i)</tex>.
Строка 151: Строка 151:
 
{{Теорема
 
{{Теорема
 
|id=th6
 
|id=th6
|statement=Унарная беспристрастная ''black-box'' сложность задачи <tex>Partition_{\neq}</tex> относительно функции приспособленности <tex>f_{\mathcal{I}}</tex> равна <tex>O(n \log(n))</tex>, где <tex>n := |\mathcal{I}|</tex>.
+
|statement=Унарная несмещенная ''black-box'' сложность задачи <tex>Partition_{\neq}</tex> относительно ''fitness''-функции <tex>f_{\mathcal{I}}</tex> равна <tex>O(n \log(n))</tex>, где <tex>n := |\mathcal{I}|</tex>.
 
|proof=Для доказательства теоретмы строится алгоритм с применением двух вариативных операторов:
 
|proof=Для доказательства теоретмы строится алгоритм с применением двух вариативных операторов:
 
:*<tex>uniform()</tex> &mdash; выбирает случайную битовую строку <tex>x \in \{0,1\}^n</tex>;
 
:*<tex>uniform()</tex> &mdash; выбирает случайную битовую строку <tex>x \in \{0,1\}^n</tex>;
Строка 172: Строка 172:
 
  11  '''else''' <tex>\mathcal{I}_1' \leftarrow \mathcal{I}_1' \cup {|f(x^{(0)}) - f(x^{(t)})|/2}</tex>;
 
  11  '''else''' <tex>\mathcal{I}_1' \leftarrow \mathcal{I}_1' \cup {|f(x^{(0)}) - f(x^{(t)})|/2}</tex>;
 
  12 '''Оптимизация'''
 
  12 '''Оптимизация'''
  13 В оффлайне перебором вычисляется оптимальное решение <tex>(\mathcal{O}_0, \mathcal{O}_1)</tex>
+
  13 В оффлайне перебором вычисляется оптимальное решение <tex>(\mathcal{O}_0, \mathcal{O}_1)</tex> и множество <tex>\mathcal{M} \leftarrow \{w \in \mathcal{O}_0 | w \notin \mathcal{I}_0'\} \cup \{w \in \mathcal{O}_1 | w \notin \mathcal{I}_1'\}</tex> &mdash; множество элементов, которые необходимо переместить.
    и множество <tex>\mathcal{M} \leftarrow \{w \in \mathcal{O}_0 | w \notin \mathcal{I}_0'\} \cup \{w \in \mathcal{O}_1 | w \notin \mathcal{I}_1'\}</tex> &mdash; множество элементов, которые необходимо переместить.
 
 
  14 <tex>z \leftarrow x^{(0)}</tex>;
 
  14 <tex>z \leftarrow x^{(0)}</tex>;
 
  15 '''while''' <tex>|\mathcal{M}| > 0</tex> '''do'''
 
  15 '''while''' <tex>|\mathcal{M}| > 0</tex> '''do'''
Строка 180: Строка 179:
 
  18    <tex>z \leftarrow y</tex>, <tex>\mathcal{M} \leftarrow \mathcal{M} \backslash \{w\}</tex>;
 
  18    <tex>z \leftarrow y</tex>, <tex>\mathcal{M} \leftarrow \mathcal{M} \backslash \{w\}</tex>;
  
За <tex>(1+o(1))n \log(n)</tex> итераций определяются веса всех элементов <tex>\mathcal{I}</tex>. Зная веса элементов, в оффлайне перебором находится оптимальное решение задачи, после чего это решение необходимо восстановить с помощью вариативного <tex>1</tex>-арного оператора. Для этого построено множество <tex>\mathcal{M}</tex> &mdash; множество элементов, которые необходимо переместить для получения оптимального решения. В итоге, беспристрастная ''black-box'' сложность задачи <tex>Partition_{\neq}</tex> относительно заданной функции приспособленности равна <tex>O(n \log(n))</tex>. Полное доказательство приведено в работе <ref name="bbox"/>.
+
За <tex>(1+o(1))n \log(n)</tex> итераций определяются веса всех элементов <tex>\mathcal{I}</tex>. Зная веса элементов, в оффлайне перебором находится оптимальное решение задачи, после чего это решение необходимо восстановить с помощью вариативного <tex>1</tex>-арного оператора. Для этого построено множество <tex>\mathcal{M}</tex> &mdash; множество элементов, которые необходимо переместить для получения оптимального решения. В итоге, несмещенная ''black-box'' сложность задачи <tex>Partition_{\neq}</tex> относительно заданной ''fitness''-функции равна <tex>O(n \log(n))</tex>. Полное доказательство приведено в работе <ref name="bbox"/>.
  
 
}}
 
}}
  
=== Беззнаковая функция приспособленности ===
+
=== Беззнаковая ''fitness''-функция ===
Можно заметить, что при доказательстве [[#th6|предыдущей теоремы]] происходила минимизация не самой функции <tex>f_{\mathcal{I}}</tex>, а только ее абсолютной величины. Однако та же асимптотика достигается и для беззнаковой функции приспособленности. Сложность заключается в том, что в этом случае нельзя просто определить вес перемещенного элемента. Этот факт выражается в более сложной процедуре для определения весов элементов.
+
Можно заметить, что при доказательстве [[#th6|предыдущей теоремы]] происходила минимизация не самой функции <tex>f_{\mathcal{I}}</tex>, а только ее абсолютной величины. Однако та же асимптотика достигается и для беззнаковой ''fitness''-функции. Сложность заключается в том, что в этом случае нельзя просто определить вес перемещенного элемента. Этот факт выражается в более сложной процедуре для определения весов элементов.
  
 
{{Теорема
 
{{Теорема
 
|id=th8
 
|id=th8
|statement=Унарная беспристрастная ''black-box'' сложность задачи <tex>Partition_{\neq}</tex> относительно функции приспособленности <tex>|f_{\mathcal{I}}|</tex> равна <tex>O(n \log(n))</tex>. Где <tex>n := |\mathcal{I}|</tex>.
+
|statement=Унарная несмещенная ''black-box'' сложность задачи <tex>Partition_{\neq}</tex> относительно ''fitness''-функции <tex>|f_{\mathcal{I}}|</tex> равна <tex>O(n \log(n))</tex>. Где <tex>n := |\mathcal{I}|</tex>.
 
|proof=Для краткости полагается:
 
|proof=Для краткости полагается:
 
:*<tex>f := |f_{\mathcal{I}}|</tex>;
 
:*<tex>f := |f_{\mathcal{I}}|</tex>;
Строка 232: Строка 231:
 
}}
 
}}
  
== Источники ==
+
== Ссылки ==
 
<references/>
 
<references/>
  
 
[[Категория:Теория сложности]]
 
[[Категория:Теория сложности]]
 
[[Категория:Эволюционные алгоритмы]]
 
[[Категория:Эволюционные алгоритмы]]

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)