Редактирование: Black-box Complexity. Примеры нереалистичных оценок Black-box Complexity

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 2: Строка 2:
 
Целью [[Теория_сложности|теории сложности]] является определение вычислительной трудности алгоритмов. Классическая теория сложности предполагает, что алгоритму полностью известна структура решаемой задачи. В случае [[Эволюционные_алгоритмы|эволюционных алгоритмов]], алгоритм обладает информацией только о качестве (значении функции приспособленности) получаемого им решения, по этой причине утверждения классической теории сложности здесь мало применимы.
 
Целью [[Теория_сложности|теории сложности]] является определение вычислительной трудности алгоритмов. Классическая теория сложности предполагает, что алгоритму полностью известна структура решаемой задачи. В случае [[Эволюционные_алгоритмы|эволюционных алгоритмов]], алгоритм обладает информацией только о качестве (значении функции приспособленности) получаемого им решения, по этой причине утверждения классической теории сложности здесь мало применимы.
  
'''Black-box Complexity''' <ref name="bbox">[http://dl.acm.org/citation.cfm?doid=2001576.2001851 Doerr B., Kötzing T., Winzen C. Too fast unbiased black-box algorithms]</ref> &mdash; попытка построить теорию сложности для эволюционных алгоритмов. Вкратце, ''black-box'' сложность алгоритма &mdash; количество вычислений функции приспособленности, необходимое для получения решения. Такое определение позволяет получить нереалистично низкие оценки ''black-box'' сложности, например, полиномиальную сложность для [[Примеры_NP-полных_языков._Теорема_Кука|<tex>\mathrm{NP}</tex>-полной]] задачи поиска максимальной клики <ref name="bbox"/><ref>[http://en.wikipedia.org/wiki/Clique_problem Clique problem]</ref>.
+
'''Black-box Complexity''' <ref name="bbox">[http://dl.acm.org/citation.cfm?doid=2001576.2001851 Doerr B., Kötzing T., Winzen C. Too fast unbiased black-box algorithms]</ref> &mdash; попытка построить теорию сложности для эволюционных алгоритмов. Вкратце, ''black-box'' сложность алгоритма &mdash; количество вычислений функции приспособленности, необходимое для получения решения. Такое определение позволяет получить нереалистично низкие оценки ''black-box'' сложности, например, полиномиальную сложность для [[Примеры_NP-полных_языков._Теорема_Кука|<tex>\mathrm{NP}</tex>-полной]] задачи поиска максимальной клики <ref>[http://en.wikipedia.org/wiki/Clique_problem Clique problem]</ref>.
  
 
По этой причине были введены ограничения на исследуемые алгоритмы. Требуется, чтобы для получения новых кандидатов на решение использовались только '''беспристрастные''' (позиция элемента в битовой строке и его значение не влияют на выбор битов для изменения) '''вариативные операторы'''. Также было введено понятие '''арности''' &mdash; <tex>k</tex>-арный беспристрастный ''black-box'' алгоритм использует только те операторы, которые принимают не более чем <tex>k</tex> аргументов. Для некоторых классов задач такой подход к опеределению ''black-box'' сложности позволяет получить более реалистичные оценки вычислительной трудности. Операторы с арностью <tex>1</tex> называют '''мутационными'''. В настоящей статье показано, что даже для алгоритмов, использующих только мутационные операторы, можно получить нереалистично маленькую оценку ''black-box'' сложности.
 
По этой причине были введены ограничения на исследуемые алгоритмы. Требуется, чтобы для получения новых кандидатов на решение использовались только '''беспристрастные''' (позиция элемента в битовой строке и его значение не влияют на выбор битов для изменения) '''вариативные операторы'''. Также было введено понятие '''арности''' &mdash; <tex>k</tex>-арный беспристрастный ''black-box'' алгоритм использует только те операторы, которые принимают не более чем <tex>k</tex> аргументов. Для некоторых классов задач такой подход к опеределению ''black-box'' сложности позволяет получить более реалистичные оценки вычислительной трудности. Операторы с арностью <tex>1</tex> называют '''мутационными'''. В настоящей статье показано, что даже для алгоритмов, использующих только мутационные операторы, можно получить нереалистично маленькую оценку ''black-box'' сложности.

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)