Редактирование: Busy beaver

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 27: Строка 27:
 
Так как мы рассматриваем <tex>n</tex> в десятичной записи, то длина <tex>p_n</tex> будет равна <tex> \lg n + const </tex>, где <tex>const</tex> {{---}} длина кода без десятичной записи <tex>n</tex>. Пусть <tex>n_0</tex> {{---}} решение уравнения <tex>\lg n + const = n</tex>. Тогда для всех натуральных <tex> n > \left \lceil n_0 \right \rceil </tex> будет выполнено неравенство: <tex> n > len(p_n) \Rightarrow BB(n) \geqslant BB(len(p_n)) > m = f(n) </tex>. Данный переход корректен, так как мы доказали, что <tex>BB(n)</tex> {{---}} монотонно возрастающая функция. Так как <tex>n_0</tex> конечно, то мы всегда можем найти такие значения <tex>n</tex>, при которых будет выполняться полученное неравенство. Отсюда следует, что утверждение доказано.
 
Так как мы рассматриваем <tex>n</tex> в десятичной записи, то длина <tex>p_n</tex> будет равна <tex> \lg n + const </tex>, где <tex>const</tex> {{---}} длина кода без десятичной записи <tex>n</tex>. Пусть <tex>n_0</tex> {{---}} решение уравнения <tex>\lg n + const = n</tex>. Тогда для всех натуральных <tex> n > \left \lceil n_0 \right \rceil </tex> будет выполнено неравенство: <tex> n > len(p_n) \Rightarrow BB(n) \geqslant BB(len(p_n)) > m = f(n) </tex>. Данный переход корректен, так как мы доказали, что <tex>BB(n)</tex> {{---}} монотонно возрастающая функция. Так как <tex>n_0</tex> конечно, то мы всегда можем найти такие значения <tex>n</tex>, при которых будет выполняться полученное неравенство. Отсюда следует, что утверждение доказано.
 
}}
 
}}
 +
----
 
'''Вывод:''' доказав предыдущее утверждение, мы проверили, что максимальное число шагов, которое может совершить программа и при этом остановиться, на самом деле растет с большей скоростью, чем любая вычислимая функция. Отсюда следует, что <tex>BB(n)</tex> невычислима.
 
'''Вывод:''' доказав предыдущее утверждение, мы проверили, что максимальное число шагов, которое может совершить программа и при этом остановиться, на самом деле растет с большей скоростью, чем любая вычислимая функция. Отсюда следует, что <tex>BB(n)</tex> невычислима.
----
 
 
{{Утверждение
 
{{Утверждение
 
|id=proposalU.  
 
|id=proposalU.  

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)