Busy beaver — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м (rollbackEdits.php mass rollback)
 
(не показаны 4 промежуточные версии 2 участников)
Строка 7: Строка 7:
 
}}
 
}}
 
----
 
----
{{
+
{{Утверждение
|statement=
+
|statement= Функция <tex>BB(n)</tex> не убывает.
Функция <tex>BB(n)</tex> не убывает.
+
|proof= Рассмотрим программу длины <tex>n</tex>, совершающую максимальное число шагов. Существует программа длины <tex>n + 1</tex>, которая делает столько же шагов: получается добавлением в предыдущую одного незначащего символа, например, пробельного. Значит, существует программа длины на один больше, которая делает не меньше шагов. Следовательно, <tex>BB</tex> не убывает.
|proof=
 
 
 
Рассмотрим программу длины <tex>n</tex>, совершающую максимальное число шагов. Существует программа длины <tex>n + 1</tex>, которая делает столько же шагов: получается добавлением в предыдущую одного незначащего символа, например, пробельного. Значит, существует программа длины на один больше, которая делает не меньше шагов. Следовательно, <tex>BB</tex> не убывает.
 
 
}}
 
}}
 
----
 
----
Строка 44: Строка 41:
 
Такая программа всегда совершает больше шагов, чем функция <tex> BB </tex> от этой программы. А это невозможно, так <tex> BB(|p|) </tex> равна максимальному числу шагов как раз этой программы. Получили противоречие.
 
Такая программа всегда совершает больше шагов, чем функция <tex> BB </tex> от этой программы. А это невозможно, так <tex> BB(|p|) </tex> равна максимальному числу шагов как раз этой программы. Получили противоречие.
 
}}
 
}}
 
  
 
== См. также ==
 
== См. также ==

Текущая версия на 19:37, 4 сентября 2022

Поиск усердных бобров (англ. busy beaver) — известная задача в теории вычислимости. Под усердным бобром в теории вычислимости понимают машину Тьюринга с заданным числом состояний конечного автомата, которая будучи запущенной на пустой ленте, записывает на нее максимальное количество ненулевых символов и останавливается.

В данном конспекте будет рассмотрена функция, которая используется в этой задаче для подсчета числа шагов для завершения программы при определенном числе состояний.

Определение:
[math]BB(n)[/math] — функция от натурального аргумента [math]n[/math], равная максимальному числу шагов, которое может совершить программа длиной [math]n[/math] символов и затем остановиться.

Утверждение:
Функция [math]BB(n)[/math] не убывает.
[math]\triangleright[/math]
Рассмотрим программу длины [math]n[/math], совершающую максимальное число шагов. Существует программа длины [math]n + 1[/math], которая делает столько же шагов: получается добавлением в предыдущую одного незначащего символа, например, пробельного. Значит, существует программа длины на один больше, которая делает не меньше шагов. Следовательно, [math]BB[/math] не убывает.
[math]\triangleleft[/math]

Утверждение:
[math]BB(n)[/math] растет быстрее любой всюду определенной неубывающей вычислимой функции [math]f(n) : N \rightarrow N [/math], то есть для всех [math]n[/math] кроме конечного числа выполнено [math]BB(n) \gt f(n).[/math]
[math]\triangleright[/math]

Докажем, что для любой вычислимой функции [math]f(n)[/math] функция [math]BB(n)[/math] будет превышать ее значение (за исключением конечного множества значений числа [math]n[/math]).
Пусть [math]f(n)[/math] представлена своим кодом. Для каждого [math]n[/math] определим программы вида:

 [math]p_n()[/math]:
   k = десятичная запись числа n
   m = f(k)
   for i = 1 to m + 1 
     шаг программы

Каждая такая программа делает как минимум [math]f(n) + 1[/math] шагов.

Так как мы рассматриваем [math]n[/math] в десятичной записи, то длина [math]p_n[/math] будет равна [math] \lg n + const [/math], где [math]const[/math] — длина кода без десятичной записи [math]n[/math]. Пусть [math]n_0[/math] — решение уравнения [math]\lg n + const = n[/math]. Тогда для всех натуральных [math] n \gt \left \lceil n_0 \right \rceil [/math] будет выполнено неравенство: [math] n \gt len(p_n) \Rightarrow BB(n) \geqslant BB(len(p_n)) \gt m = f(n) [/math]. Данный переход корректен, так как мы доказали, что [math]BB(n)[/math] — монотонно возрастающая функция. Так как [math]n_0[/math] конечно, то мы всегда можем найти такие значения [math]n[/math], при которых будет выполняться полученное неравенство. Отсюда следует, что утверждение доказано.
[math]\triangleleft[/math]

Вывод: доказав предыдущее утверждение, мы проверили, что максимальное число шагов, которое может совершить программа и при этом остановиться, на самом деле растет с большей скоростью, чем любая вычислимая функция. Отсюда следует, что [math]BB(n)[/math] невычислима.


Утверждение:
Функция Busy beaver невычислима.
[math]\triangleright[/math]

По теореме о рекурсии, программа может знать свой исходный код. Значит, в неё можно написать функцию [math] \mathrm{getSrc()} [/math], которая вернёт строку — исходный код программы. Предположим, что функция Busy beaver вычислима. Тогда напишем такую программу

 [math]p(){:}[/math]
   for i = 1..BB([math]|\mathrm{getSrc()}|[/math]) + 1
     do smth

Такая программа всегда совершает больше шагов, чем функция [math] BB [/math] от этой программы. А это невозможно, так [math] BB(|p|) [/math] равна максимальному числу шагов как раз этой программы. Получили противоречие.
[math]\triangleleft[/math]

См. также

Источники информации